A164652 Triangle read by rows: Hultman numbers: a(n,k) is the number of permutations of n elements whose cycle graph (as defined by Bafna and Pevzner) contains k cycles for n >= 0 and 1 <= k <= n+1.
1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 8, 0, 15, 0, 1, 0, 84, 0, 35, 0, 1, 180, 0, 469, 0, 70, 0, 1, 0, 3044, 0, 1869, 0, 126, 0, 1, 8064, 0, 26060, 0, 5985, 0, 210, 0, 1, 0, 193248, 0, 152900, 0, 16401, 0, 330, 0, 1, 604800, 0, 2286636, 0, 696905, 0, 39963, 0, 495, 0, 1, 0, 19056960, 0, 18128396, 0, 2641925, 0, 88803, 0, 715, 0, 1
Offset: 0
Examples
Triangle begins: n=0: 1; n=1: 0, 1; n=2: 1, 0, 1; n=3: 0, 5, 0, 1; n=4: 8, 0, 15, 0, 1; n=5: 0, 84, 0, 35, 0, 1; n=6: 180, 0, 469, 0, 70, 0, 1; n=7: 0, 3044, 0, 1869, 0, 126, 0, 1; n=8: 8064, 0, 26060, 0, 5985, 0, 210, 0, 1; n=9: 0, 193248, 0, 152900, 0, 16401, 0, 330, 0, 1; n=10: 604800, 0, 2286636, 0, 696905, 0, 39963, 0, 495, 0, 1; ... From _Jon E. Schoenfield_, May 20 2023: (Start) As a right-aligned triangle: 1; n=0 0, 1; n=1 1, 0, 1; n=2 0, 5, 0, 1; n=3 8, 0, 15, 0, 1; n=4 0, 84, 0, 35, 0, 1; n=5 180, 0, 469, 0, 70, 0, 1; n=6 0, 3044, 0, 1869, 0, 126, 0, 1; n=7 8064, 0, 26060, 0, 5985, 0, 210, 0, 1; n=8 0, 193248, 0, 152900, 0, 16401, 0, 330, 0, 1; n=9 604800, 0, 2286636, 0, 696905, 0, 39963, 0, 495, 0, 1; n=10 ... (End)
References
- Axel Hultman, Toric permutations, Master's thesis, Department of Mathematics, KTH, Stockholm, Sweden, 1999.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Nikita Alexeev, Anna Pologova, and Max A. Alekseyev, Generalized Hultman Numbers and Cycle Structures of Breakpoint Graphs, Journal of Computational Biology, Vol. 24, No. 2 (2017), pp. 93-105; arXiv preprint, arXiv:1503.05285 [q-bio.GN], 2015-2017.
- Nikita Alexeev and Peter Zograf, Hultman numbers, polygon gluings and matrix integrals, arXiv preprint arXiv:1111.3061 [math.PR], 2011.
- Nikita Alexeev and Peter Zograf, Random matrix approach to the distribution of genomic distance, Journal of Computational Biology, Vol. 21, No. 8 (2014), pp. 622-631.
- Miklos Bona and Ryan Flynn, The Average Number of Block Interchanges Needed to Sort A Permutation and a recent result of Stanley, arXiv:0811.0740 [math.CO], 2008.
- Miklos Bona and Ryan Flynn, The Average Number of Block Interchanges Needed to Sort A Permutation and a recent result of Stanley, Inf. Process. Lett., Vol. 109 (2009), pp. 927-931.
- David A. Christie, Sorting Permutations by Block-Interchanges, Inf. Process. Lett., Vol. 60, No. 4 (1996), pp. 165-169.
- Robert Cori and Gábor Hetyei, On reduced unicellular hypermonopoles, arXiv:2403.19569 [math.CO], 2024. See at p. 4.
- Jean-Paul Doignon and Anthony Labarre, On Hultman Numbers, J. Integer Seq., Vol. 10 (2007), Article 07.6.2, 13 pages.
- Simona Grusea and Anthony Labarre, The distribution of cycles in breakpoint graphs of signed permutations, arXiv:1104.3353 [cs.DM], 2011-2012.
- Reina Ishikawa, Tsuyoshi Miezaki, and Yuuho Tanaka, A new interpretation of Hultman numbers.
Crossrefs
Programs
-
Haskell
a164652 n k = a164652_tabl !! n !! k a164652_row n = a164652_tabl !! n a164652_tabl = [0] : tail (zipWith (zipWith (*)) a128174_tabl $ zipWith (map . flip div) (tail a000217_list) (map init $ tail a130534_tabl)) -- Reinhard Zumkeller, Aug 01 2014
-
Maple
A164652:= (n, k)-> `if`(n-k mod 2 = 1, -Stirling1(n+2, k)/binomial(n+2, 2), 0): for n from 0 to 7 do seq(A164652(n,k),k=1..n+1) od; # Peter Luschny, Mar 22 2015
-
Mathematica
T[n_, k_] := If[OddQ[n-k], Abs[StirlingS1[n+2, k]]/Binomial[n+2, 2], 0]; Table[T[n, k], {n, 0, 11}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
PARI
T(n,k)= my(s=(n-k)%2); (-1)^s*s*stirling(n+2,k,1)/binomial(n+2,2); concat(vector(12, n, vector(n, k, T(n-1,k)))) \\ Gheorghe Coserea, Jan 23 2018
-
Sage
def A164652(n, k): return stirling_number1(n+2,k)/binomial(n+2,2) if is_odd(n-k) else 0 for n in (0..7): print([A164652(n,k) for k in (1..n+1)]) # Peter Luschny, Mar 22 2015
Formula
T(n,k) = S1(n+2,k)/C(n+2,2) if n-k is odd, and 0 otherwise. Here S1(n,k) are the unsigned Stirling numbers of the first kind A132393 and C(n,k) is the binomial coefficient (see Bona and Flynn).
For n > 0: T(n,k) = A128174(n+1,k) * A130534(n+1,k-1) / A000217(n+1). - Reinhard Zumkeller, Aug 01 2014
n-th row polynomial R(n,x) = (x/2)*( P(n+1,x) + (-1)^n * P(n+1,-x) ) / binomial(n+2,2), where P(k,x) = (x + 1)*(x + 2)*...*(x + k). - Peter Bala, May 14 2023
Extensions
T(0,1) set to 1 by Peter Luschny, Mar 24 2015
Edited to match values of k to the range 1 to n+1. - Max Alekseyev, Nov 20 2020
Comments