A164783 a(n) = 7^n-6.
1, 43, 337, 2395, 16801, 117643, 823537, 5764795, 40353601, 282475243, 1977326737, 13841287195, 96889010401, 678223072843, 4747561509937, 33232930569595, 232630513987201, 1628413597910443, 11398895185373137
Offset: 1
References
- Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem. Vol. 4, No. 2, Dec 1978, pp. 277-302.
- Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
- Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Daniel Minoli, Issues In Non-Linear Hyperperfect Numbers, Mathematics of Computation, Vol. 34, No. 150, April 1980, pp. 639-645.
- D. Minoli, Structural Issues For Hyperperfect Numbers, Fibonacci Quarterly, Feb. 1981, Vol. 19, No. 1, pp. 6-14.
- D. Minoli and Robert Bear, Hyperperfect Numbers, Pi Mu Epsilon Journal, Fall 1975, pp. 153-157.
- Daniel Minoli and W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
- Index entries for linear recurrences with constant coefficients, signature (8,-7).
Programs
-
Magma
[7^n-6: n in [1..30]]; // Vincenzo Librandi, Feb 06 2013
-
Mathematica
CoefficientList[Series[(1 + 35 x)/((1-x) (1-7 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *) NestList[7 # + 36 & , 1, 18] (* Bruno Berselli, Feb 06 2013 *) LinearRecurrence[{8,-7},{1,43},30] (* Harvey P. Dale, Nov 27 2014 *)
-
PARI
a(n)=7^n-6 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 7*a(n-1)+36 with n>1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
G.f.: x*(1+35*x)/((1-x)*(1-7*x)). - Colin Barker, Mar 08 2012
a(n) = 8*a(n-1) - 7*a(n-2) for n>2, a(1)=1, a(2)=43. - Vincenzo Librandi, Feb 06 2013
a(n) = A000420(n) - 6 for n>0. - Michel Marcus, Aug 31 2013
Extensions
More terms a(8)-a(19) from Vincenzo Librandi, Oct 29 2009
Comments