A164785 a(n) = 5^n - 4.
1, 21, 121, 621, 3121, 15621, 78121, 390621, 1953121, 9765621, 48828121, 244140621, 1220703121, 6103515621, 30517578121, 152587890621, 762939453121, 3814697265621, 19073486328121, 95367431640621, 476837158203121
Offset: 1
References
- Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Daniel Minoli and W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
- Daniel Minoli and Robert Bear, Hyperperfect Numbers, Pi Mu Epsilon Journal, Fall 1975, pp. 153-157.
- Index entries for linear recurrences with constant coefficients, signature (6,-5).
Crossrefs
Cf. A059613.
Programs
-
Magma
[5^n-4: n in [1..30]]; // Vincenzo Librandi, Feb 06 2013
-
Mathematica
5^Range[50]-4 (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *) LinearRecurrence[{6,-5},{1,21},30] (* or *) NestList[5 # + 16 &, 1, 30] (* Harvey P. Dale, Jun 07 2012 *) CoefficientList[Series[(1 + 15 x)/(1 - 6 x + 5 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 06 2013 *)
Formula
a(n) = 5*a(n-1) + 16 with n > 1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
a(n) = 6*a(n-1) - 5*a(n-2); a(1)=1, a(2)=21. - Harvey P. Dale, Jun 07 2012
G.f.: x*(1 + 15*x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Feb 06 2013
E.g.f.: 3 + (exp(4*x) - 4)*exp(x). - Ilya Gutkovskiy, Jun 11 2016
Extensions
More terms a(9)-a(21) from Vincenzo Librandi, Oct 29 2009
Comments