cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A116656 Slowest growing sequence of semiprimes having the semiprime-pairwise-sum property: for any i

Original entry on oeis.org

4, 6, 51, 115, 511, 5263, 116623, 204091, 823363, 1144363, 78325123, 883337023, 6860264683, 19613836423, 167589841663
Offset: 1

Views

Author

Zak Seidov, Feb 21 2006

Keywords

Examples

			Triangle of resulting semiprimes begins:
      10
      55,     57
     119,    121,    166
     515,    517,    562,    626
    5267,   5269,   5314,   5378,   5774
  116627, 116629, 116674, 116738, 117134, 121886
		

Crossrefs

Programs

  • Mathematica
    spQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; L = {0, 4}; Do[n = L[[-1]] + 1; While[! AllTrue[n + L, spQ], n++]; AppendTo[L, n], {9}]; Rest@ L (* Giovanni Resta, Jun 13 2018 *)
  • PARI
    lista(nn) = my(m, r, s, t, u, v=vector(nn=max(2, nn))); print1(v[1]=4, ", ", v[2]=6); for(n=3, nn, m=4; r=List([3]); forprime(p=2, oo, if(m*p>v[n-1], break); u=List([]); forprime(q=2, p-1, s=Set(v%(t=p*q)); for(i=1, #s, listput(u, Mod(t-s[i], t)))); s=List([]); for(i=1, #r, forstep(k=r[i], m*p, m, t=1; for(j=1, #u, if(k==u[j], t=0; break)); if(t, listput(s, k)))); r=s; m*=p); listsort(r); forstep(i=0, oo, m, for(j=1, #r, t=i+r[j]; if(t>v[n-1]&&bigomega(t)==2&&bigomega(t+4)==2&&bigomega(t+6)==2, for(k=3, n-1, if(!isprime((t+v[k])\2), t=0; break)); if(t, print1(", ", v[n]=t); break(2)))))); \\ Jinyuan Wang, May 29 2025

Extensions

a(8)-a(10) from R. J. Mathar, Jan 23 2008
a(11)-a(12) from Donovan Johnson, Nov 11 2008
a(13) from Donovan Johnson, Jul 22 2011
a(14) from Giovanni Resta, Jun 13 2018
a(15) from Giovanni Resta, Jun 14 2018

A114845 Slowest growing sequence of semiprimes having the semiprime-pairwise-average property: for any i,j, (a(i)+a(j))/2 is semiprime.

Original entry on oeis.org

4, 14, 38, 134, 254, 13238, 252254, 691958, 952814, 3316238, 30364918838, 210339665174, 575167942574
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2006

Keywords

Comments

Semiprime analog of A113875.

Examples

			The pairwise average of the semiprimes {4 = 2^2, 14 = 2*7} is {9 = 3^2}.
The pairwise averages of the semiprimes {4, 14, 38} are {9, 21, 26}.
The pairwise averages of the semiprimes {4, 14, 38, 134} are {9, 21, 26, 69, 74, 86}.
The pairwise averages of the semiprimes {4, 14, 38, 134, 254} are {9, 21, 26, 69, 74, 86, 129, 134, 146, 194}.
		

Crossrefs

Formula

a(n) = 2*A164979(n).

Extensions

More terms from Zak Seidov, Feb 21 2006
Corrected and extended by Zak Seidov, Sep 03 2009
a(11)-a(12) from Amiram Eldar, Jun 27 2024
a(13) from Jinyuan Wang, May 29 2025

A305887 The least increasing sequence of numbers where all pairwise sums are semiprimes, with a(1)=4.

Original entry on oeis.org

4, 5, 10, 29, 173, 249, 19073, 71489, 1166789, 3800333, 7021253, 15920129, 84551600693, 224223772673
Offset: 1

Views

Author

Zak Seidov, Jun 14 2018

Keywords

Comments

All terms > 10 are congruent to {3, 9} mod 10.
Triangle of resulting semiprimes begins:
9
14, 15
33, 34, 39
177, 178, 183, 202

Crossrefs

Programs

  • Mathematica
    Nest[Append[#, Block[{k = Last[#] + 1}, While[! AllTrue[#, PrimeOmega[k + #] == 2 &], k++]; k]] &, {4}, 7] (* Michael De Vlieger, Jun 14 2018 *)

Extensions

a(13) from Giovanni Resta, Jun 14 2018
a(14) from Jinyuan Wang, May 29 2025
Showing 1-3 of 3 results.