cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165218 Primes q of the form q=p^2+4 (p=prime) such that r=q^2+4 is also prime.

Original entry on oeis.org

13, 293, 10613, 18773, 76733, 97973, 458333, 552053, 1247693, 2647133, 4012013, 4592453, 11607653, 13520333, 20097293, 25877573, 34845413, 51509333, 53772893, 65399573, 65496653, 66373613, 72880373, 73496333, 86359853, 89737733
Offset: 1

Views

Author

Zak Seidov, Sep 08 2009

Keywords

Comments

Intersection of A062324 and A045637. Except of the first term, 13, all terms == 5 (mod 6) == 5 (mod 12) == 5 (mod 24) == 23 (mod 30)== 53 (mod 120). Values of primes p in A116886.

Examples

			Prime q=13=p^2+4 (p=3) and r=q^2+4=13^2+4=173 (prime).
Prime q=293=p^2+4 (p=17) and r=q^2+4=293^2+4=85853 (prime).
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[PrimeQ[q = p^2+4] && PrimeQ[q^2+4], Print[q]; Sow[q]]]][[2, 1]] (* Jean-François Alcover, Nov 07 2013 *)
    Select[Prime[Range[2000]]^2+4,AllTrue[{#,#^2+4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 13 2018 *)

Formula

a(n) = (A116886(n))^2 + 4.