A165310 a(0)=1, a(1)=3, a(n) = 7*a(n-1) - 9*a(n-2) for n > 1.
1, 3, 12, 57, 291, 1524, 8049, 42627, 225948, 1197993, 6352419, 33684996, 178623201, 947197443, 5022773292, 26634636057, 141237492771, 748950724884, 3971517639249, 21060066950787, 111676809902268, 592197066758793
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (7,-9).
Programs
-
Magma
I:=[1,3]; [n le 2 select I[n] else 7*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 24 2011
-
Mathematica
LinearRecurrence[{7,-9},{1,3},30] (* Harvey P. Dale, Sep 23 2011 *)
Formula
G.f.: (1-4x)/(1-7x+9x^2).
a(n) = Sum_{k=0..n} A165253(n,k)*3^(n-k).
a(n) = ((13-sqrt(13))*(7+sqrt(13))^n+(13+sqrt(13))*(7-sqrt(13))^n )/(26*2^n). - Klaus Brockhaus, Sep 26 2009
Comments