cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165563 a(n) = 1 + 2*n + n^2 + 2*n^3 + n^4.

Original entry on oeis.org

1, 7, 41, 151, 409, 911, 1777, 3151, 5201, 8119, 12121, 17447, 24361, 33151, 44129, 57631, 74017, 93671, 117001, 144439, 176441, 213487, 256081, 304751, 360049, 422551, 492857, 571591, 659401, 756959, 864961, 984127, 1115201, 1258951, 1416169, 1587671
Offset: 0

Views

Author

Paul Curtz, Sep 22 2009

Keywords

Comments

Also binomial transform of the quasi-finite sequence 1,6,28,48,24,0 (0 continued).

Programs

  • Magma
    [1 +2*n +n^2 +2*n^3 +n^4: n in [0..40] ]; // Vincenzo Librandi, Aug 06 2011
    
  • Mathematica
    Table[1+2n+n^2+2n^3+n^4,{n,0,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,41,151,409},50] (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    a(n)=1+2*n+n^2+2*n^3+n^4 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24 -> 4th differences are 24 = A010863(n).
G.f.: (-1 - 2*x - 16*x^2 - 6*x^3 + x^4)/(x-1)^5.

Extensions

Edited and extended by R. J. Mathar, Sep 25 2009