cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005177 Number of connected regular graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 4, 17, 22, 167, 539, 18979, 389436, 50314796, 2942198440, 1698517036411, 442786966115560, 649978211591600286, 429712868499646474880, 2886054228478618211088773, 8835589045148342277771518309, 152929279364927228928021274993215, 1207932509391069805495173301992815105, 99162609848561525198669168640159162918815
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Regular simple graphs of any degree: this sequence (connected), A068932 (disconnected), A005176 (not necessarily connected), A275420 (multisets).
Connected regular graphs of any degree with girth at least g: this sequence (g=3), A186724 (g=4), A186725 (g=5), A186726 (g=6), A186727 (g=7), A186728 (g=8), A186729 (g=9).
Connected regular simple graphs: this sequence (any degree), A068934 (triangular array); specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11). - Jason Kimberley, Nov 03 2011

Formula

a(n) = sum of the n-th row of A068934.
a(n) = A165647(n) - A165648(n).
This sequence is the inverse Euler transformation of A165647.

Extensions

More terms from David Wasserman, Mar 08 2002
a(15) from Giovanni Resta, Feb 05 2009
Terms are sums of the output from M. Meringer's genreg software. To complete a(16) it was run by Jason Kimberley, Sep 23 2009
a(0)=1 (due to the empty graph being vacuously connected and regular) inserted by Jason Kimberley, Apr 11 2012
a(17)-a(21) from Andrew Howroyd, Mar 10 2020
a(22)-a(24) from Andrew Howroyd, May 19 2020

A275420 Triangle read by rows: T(n,k) = number of graphs with n nodes and k connected regular components.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 5, 5, 4, 2, 1, 1, 4, 9, 6, 4, 2, 1, 1, 17, 14, 12, 7, 4, 2, 1, 1, 22, 30, 19, 13, 7, 4, 2, 1, 1, 167, 56, 42, 22, 14, 7, 4, 2, 1, 1, 539, 224, 74, 47, 23, 14, 7, 4, 2, 1, 1, 18979, 785, 271, 87, 50, 24, 14, 7, 4, 2, 1, 1, 389436, 19783
Offset: 1

Views

Author

R. J. Mathar, Jul 27 2016

Keywords

Comments

Multiset transformation of A005177.
The resulting graph has each component regular but may not be regular itself since different components can have different degrees. - Andrew Howroyd, May 20 2020

Examples

			      1
      1   1
      1   1   1
      2   2   1   1
      2   3   2   1   1
      5   5   4   2   1   1
      4   9   6   4   2   1   1
     17  14  12   7   4   2   1   1
     22  30  19  13   7   4   2   1   1
    167  56  42  22  14   7   4   2   1   1
    539 224  74  47  23  14   7   4   2   1   1
  18979 785 271  87  50  24  14   7   4   2   1   1
		

Crossrefs

Cf. A005177 (1st column), A165647 (row sums).

Formula

T(n,1) = A005177(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1
G.f.: Product_{j>=1} (1-y*x^j)^(-A005177(j)). - Alois P. Heinz, Apr 13 2017

Extensions

Name clarified by Andrew Howroyd, May 20 2020

A165648 Number of disconnected simple graphs on n vertices with each component regular.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 23, 41, 77, 149, 397, 1246, 21135, 430933, 51156773, 3044120326, 1704554902881, 446193132548644, 650868899188542416, 431014163502227412545, 2886915606822315071638459, 8841362446647790021087061250, 152946959203764346079534774815394, 1208238394473886999896406262410758886
Offset: 1

Author

Jason Kimberley, Sep 23 2009

Keywords

Examples

			The a(2)=1 graph is: 2K_1. The a(3)=2 graphs are: 3K_1, K_1+K_2. The a(4)=4 graphs are: 4K_1, 2K_1+K_2, K_1+K_3, 2K_2.
		

Crossrefs

Programs

  • Mathematica
    A005177 = Cases[Import["https://oeis.org/A005177/b005177.txt", "Table"], {, }][[All, 2]]~Join~{0};
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[DivisorSum[j, # p[#]&] b[n - j], {j, 1, n}]/n]; b];
    b = etr[A005177[[# + 1]]&];
    a[n_] := b[n] - A005177[[n + 1]];
    a /@ Range[17] (* Jean-François Alcover, Dec 02 2019 *)

Formula

a(n) = A165647(n) - A005177(n)
= Euler_transformation(A005177)(n) - A005177(n).

Extensions

Terms a(18) and beyond from Andrew Howroyd, May 21 2020
Showing 1-3 of 3 results.