cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258820 Reversed rows of A178252 presented as diagonals of an irregular triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 5, 2, 1, 1, 3, 10, 1, 1, 7, 5, 5, 1, 1, 4, 7, 5, 1, 1, 9, 28, 35, 3, 1, 1, 5, 12, 14, 7, 1, 1, 11, 15, 21, 14, 7, 1, 1, 6, 55, 30, 126, 28, 1, 1, 13, 22, 165, 42, 21, 4, 1
Offset: 0

Views

Author

Tom Copeland, Jun 18 2015

Keywords

Comments

The diagonals of T are the reversed rows of A178252. E.g., the fifth diagonal of T is (1,2,2,1,1) from the example below, which is the fifth reversed row of A178252.
Factoring out the greatest common divisor (gcd) of the coefficients of the sub-polynomials in the indeterminate q of the polynomials in s presented on p. 12 of the Alexeev et al. link and then evaluating the sub-polynomials at q=1 gives the first nine rows of T given in the example below. E.g., for k=6 (the seventh row), q*s^6 + (6*q + 9*q^2) s^4 + (15*q + 15*q^2) s^2 + 5 = q*s^6 + 3*(2*q + 3*q^2)*s^4 + 15*(q + q^2)*s^2 + 5 generates (1,2+3,1+1,1)=(1,5,2,1).
The row length sequence of this irregular triangle is A008619(n) = 1 + floor(n/2). - Wolfdieter Lang, Aug 25 2015

Examples

			The irregular triangle T(n,k) starts
n\k  0 1  2  3 4 5 ...
0:   1
1:   1
2:   1 1
3:   1 1
4:   1 3  1
5:   1 2  1
6:   1 5  2  1
7:   1 3 10  1
8:   1 7  5  5 1
9:   1 4  7  5 1
10:  1 9 28 35 3 1
... reformatted. - _Wolfdieter Lang_, Aug 25 2015
		

Crossrefs

Programs

  • Mathematica
    max = 15; coes = Table[ PadRight[ CoefficientList[ BernoulliB[n, x], x], max], {n, 0, max-1}]; inv = Inverse[coes] // Numerator; t[n_, k_] := inv[[n, k]]; t[n_, k_] /; k == n+1 = 1; Table[t[n-k+1, k], {n, 2, max+1}, {k, 2, Floor[n/2]+1}] // Flatten (* Jean-François Alcover, Jul 22 2015 *)

Formula

T(n,k) = A178252(n-k,n-2k) = A055151(n,k) / A161642(n,k) = A007318(n,2k) * A000108(k) / A161642(n,k) = n! / [(n-2k)! k! (k+1)! A161642(n,k)] = A003989(n-k+1,k+1) * (n-k)! / [ (n-2k)! (k+1)! ], where A003989(j,k) = gcd(j,k).

A159335 Triangle read by rows: numerator of n/binomial(n,m).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 2, 1, 4, 5, 1, 1, 1, 1, 5, 6, 1, 2, 3, 2, 1, 6, 7, 1, 1, 1, 1, 1, 1, 7, 8, 1, 2, 1, 4, 1, 2, 1, 8, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 10, 1, 2, 1, 1, 5, 1, 1, 2, 1, 10, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 12, 1, 2, 3, 4, 1, 1, 1, 4, 3, 2, 1, 12, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 0

Views

Author

Leroy Quet, Apr 10 2009

Keywords

Comments

This triangle first differs from A109004 (read as a triangle) at T(10, 4) and T(10,6).
T(n,m) is the smallest positive integer such that binomial(n,m)*T(n,m) is a multiple of n.

Examples

			Row 10 of Pascal's triangle is: 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1. {a(10,m)} of this sequence (A159335) is: 10, 1, 2, 1, 1, 5, 1, 1, 2, 1,10. Multiplying the corresponding integers, we get multiples of 10: 1*10=10,10*1=10, 45*2=90, 120*1=120, 210*1=210, 252*5=1260, 210*1=210, 120*1=120, 45*2=90, 10*1=10, 1*10=10.
		

Crossrefs

Cf. A165661 (denominators), A007318, A020475, A109004.

Programs

  • Magma
    /* As triangle */ [[n/GCD(n,Binomial(n, k)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 25 2018
  • Mathematica
    Table[n/GCD[n, Binomial[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jun 25 2018 *)
  • PARI
    for(n=0, 10, for(k=0,n, print1(n/gcd(n, binomial(n,k)), ", "))) \\ G. C. Greubel, Jun 25 2018
    

Formula

T(n,m) = n/gcd(n,binomial(n,m)).

Extensions

Extended by Ray Chandler, Jun 19 2009
Edited by Franklin T. Adams-Watters, Sep 24 2009
Showing 1-2 of 2 results.