cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166554 a(0)=1, a(n) = n*(a(n-1) - 1) for n>0.

Original entry on oeis.org

1, 0, -2, -9, -40, -205, -1236, -8659, -69280, -623529, -6235300, -68588311, -823059744, -10699776685, -149796873604, -2246953104075, -35951249665216, -611171244308689, -11001082397556420, -209020565553571999
Offset: 0

Views

Author

Philippe Deléham, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (n-1)*(Self(n-1) - 1): n in [1..41]]; // G. C. Greubel, Nov 30 2024
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==n(a[n-1]-1)},a[n],{n,20}] (* Harvey P. Dale, Jul 25 2011 *)
  • Python
    def A166554(n): return 1 +factorial(n) -int(exp(1)*factorial(n)) +int(n==0)
    print([A166554(n) for n in range(41)]) # G. C. Greubel, Nov 30 2024

Formula

a(n) = -A038156(n) for n>0.
a(n) = n! - floor(e*n!) + 1, n>0. - Gary Detlefs, Jun 06 2010
a(n) = (n+2)*a(n-1) - (2*n-1)*a(n-2) + (n-2)*a(n-3). - R. J. Mathar, Jul 28 2013

A166680 a(n) = n*(a(n-1)-4), a(0) = 1.

Original entry on oeis.org

1, -3, -14, -54, -232, -1180, -7104, -49756, -398080, -3582756, -35827600, -394103644, -4729243776, -61480169140, -860722368016, -12910835520300, -206573368324864, -3511747261522756, -63211450707409680
Offset: 0

Views

Author

Philippe Deléham, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==n(a[n-1]-4)},a,{n,20}] (* Harvey P. Dale, Apr 18 2014 *)
    FoldList[#1*#2 - 4 #2 &, 1, Range[50]] (* G. C. Greubel, May 23 2016 *)

Formula

a(n) = n! - 4*floor(e*n!) + 4, n>0. - Gary Detlefs, Jun 19 2010

A384066 Limiting values for Cauchy-complete category table A384134.

Original entry on oeis.org

1, 2, 10, 39, 168
Offset: 0

Views

Author

Elijah Beregovsky, May 20 2025

Keywords

Comments

This appears to be the absolute value of A165814.

Crossrefs

Formula

A384134(n,k) = a(n-k) if k >= (2/3)*n.
Showing 1-3 of 3 results.