cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165988 First trisection of A022998.

Original entry on oeis.org

0, 3, 12, 9, 24, 15, 36, 21, 48, 27, 60, 33, 72, 39, 84, 45, 96, 51, 108, 57, 120, 63, 132, 69, 144, 75, 156, 81, 168, 87, 180, 93, 192, 99, 204, 105, 216, 111, 228, 117, 240, 123, 252, 129, 264, 135, 276, 141, 288, 147, 300, 153, 312, 159, 324, 165, 336, 171, 348, 177
Offset: 0

Views

Author

Paul Curtz, Oct 03 2009

Keywords

Comments

Read modulo 10, this yields a sequence with a period of length 10 containing all 10 digits: 0, 3, 2, 9, 4, 5, 6, 1, 8, 7.
The other two trisections start 1, 8, 7, 20, 13, 32, 19, 44.... and 4, 5, 16, 11, 28, 17, 40, 23....
The Pisano period lengths for reading the sequence modulo m>=1 are 1, 2, 1, 4, 10, 2, 14, 8, 6, 10, 22, 4, 26, 14, 10, 16, 34, 6, 38, 20, 14, 22, 46, 8, 50, 26, 18, 28, 58... - R. J. Mathar, Oct 08 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 0, -1}, {0, 3, 12, 9}, 50] (* G. C. Greubel, Apr 20 2016 *)
  • PARI
    a(n) = my(n=3*n); if (n % 2, n, 2*n); \\ Michel Marcus, Apr 21 2016

Formula

a(n) = A022998(3n) = 3*A022998(n) = 3*n*(3 +(-1)^n)/2 .
a(n) = 2*a(n-2) - a(n-4).
G.f.: 3*x*(1+4*x+x^2)/((x-1)^2 *(1+x)^2).
E.g.f.: 3*x*(-1 + 3*exp(2*x))*exp(-x)/2. - Ilya Gutkovskiy, Apr 21 2016