cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A165974 Irregular triangle read by rows: floor(j^2 / p) for p prime and j = 1 to p-1.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 2, 3, 5, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 9, 11, 0, 0, 0, 0, 1, 2, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 21
Offset: 1

Views

Author

Keywords

Comments

The irregular triangle of numbers is:
....j..1..2..3..4..5..6..7..8..9.10.11.12.13.14.15.16.17.18.19.20.21.22
..p
..2....0
..3....0..1
..5....0..0..1..3
..7....0..0..1..2..3..5
.11....0..0..0..1..2..3..4..5..7..9
.13....0..0..0..1..1..2..3..4..6..7..9.11
.17....0..0..0..0..1..2..2..3..4..5..7..8..9.11.13.15
.19....0..0..0..0..1..1..2..3..4..5..6..7..8.10.11.13.15.17
.23....0..0..0..0..1..1..2..2..3..4..5..6..7..8..9.11.12.14.15.17.19.21

Crossrefs

Cf. A165993 (row sums).

Extensions

Keyword:tabf added by R. J. Mathar, Oct 09 2009

A014817 a(n) = Sum_{k=1..n} floor(k^2/n).

Original entry on oeis.org

1, 2, 4, 7, 9, 13, 18, 24, 29, 34, 42, 51, 57, 67, 78, 90, 97, 110, 122, 137, 149, 163, 180, 198, 211, 226, 246, 265, 281, 303, 324, 348, 365, 386, 412, 439, 457, 483, 512, 540, 561, 590, 618, 651, 679, 709, 742
Offset: 1

Views

Author

Keywords

Examples

			Row sums of the underlying triangle of floor(k^2/n), 1<=k<=n:
1;
0,2;
0,1,3;
0,1,2,4;
0,0,1,3,5;
0,0,1,2,4,6;
0,0,1,2,3,5,7;
0,0,1,2,3,4,6,8;
0,0,1,1,2,4,5,7,9;
0,0,0,1,2,3,4,6,8,10;
- _R. J. Mathar_, Aug 09 2013
		

References

  • M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 103.

Crossrefs

Programs

Formula

a(n) = n +A166375(n).
For prime p>2, a(p) = (p^2+2)/3 - A228131(p)/p. In particular, for prime p==1 (mod 4), a(p) = (p^2+2)/3. - Max Alekseyev, Aug 11 2013
Showing 1-2 of 2 results.