cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A166347 Irregular triangle read by rows of the frequency with which each value v of floor (j^2/p) occurs within A165974 for each prime p, taken over 1 <= j <= p - 1.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 0, 1, 0, 2, 1, 1, 1, 0, 1, 0, 3, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 3, 2, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 4, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 4, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

Part of the irregular triangle from which the sequence is constructed
is shown below.
....v..0..1..2..3..4..5..6..7..8..9.10.11.12.13.14.15.16.17.18.19.20.21.22
..p
..2....1..0
..3....1..1..0
..5....2..1..0..1..0
..7....2..1..1..1..0..1..0
.11....3..1..1..1..1..1..0..1..0..1..0
.13....3..2..1..1..1..0..1..1..0..1..0..1..0
.17....4..1..2..1..1..1..0..1..1..1..0..1..0..1..0..1..0
.19....4..2..1..1..1..1..1..1..1..0..1..1..0..1..0..1..0..1..0
.23....4..2..2..1..1..1..1..1..1..1..0..1..1..0..1..1..0..1..0..1..0..1..0

Crossrefs

Extensions

Minor edits by Christopher Hunt Gribble, Oct 13 2009

A166348 Irregular triangle read by rows giving the frequency with which each nonzero value v of floor (j^2/p) occurs within A165974 for each j, taken over all primes p.

Original entry on oeis.org

1, 2, 0, 2, 1, 1, 4, 1, 1, 0, 4, 2, 1, 0, 1, 6, 3, 1, 1, 0, 0, 7, 3, 2, 1, 1, 0, 0, 10, 3, 1, 2, 0, 1, 1, 0, 10, 4, 2, 1, 2, 0, 1, 0, 1, 13, 5, 2, 1, 1, 1, 1, 0, 1, 0, 14, 5, 4, 2, 0, 1, 1, 1, 0, 0, 1, 16, 7, 3, 2, 2, 0, 1, 1, 1, 0, 0, 0, 19, 7, 3, 3, 1, 2, 0, 1, 0, 1, 1, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			Part of the irregular triangle from which the sequence is constructed is shown below.
....v...1..2..3..4..5..6..7..8..9.10.11.12.13
..j
..1.....
..2.....1
..3.....2..0
..4.....2..1..1
..5.....4..1..1..0
..6.....4..2..1..0..1
..7.....6..3..1..1..0..0
..8.....7..3..2..1..1..0..0
..9....10..3..1..2..0..1..1..0
.10....10..4..2..1..2..0..1..0..1
.11....13..5..2..1..1..1..1..0..1..0
.12....14..5..4..2..0..1..1..1..0..0..1
.13....16..7..3..2..2..0..1..1..1..0..0..0
.14....19..7..3..3..1..2..0..1..0..1..1..0..0
		

Crossrefs

Extensions

Minor corrections by Christopher Hunt Gribble, Dec 13 2009

A117490 Number of primes between n and n^2 (with n and n^2 excluded).

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 11, 14, 18, 21, 25, 29, 33, 38, 42, 48, 54, 59, 64, 70, 77, 84, 90, 96, 105, 113, 120, 128, 136, 144, 151, 161, 170, 180, 189, 199, 207, 216, 228, 239, 250, 261, 269, 281, 292, 305, 314, 327, 342, 352, 363, 378, 393, 405, 418, 429, 441, 458, 470
Offset: 1

Views

Author

Keywords

Comments

A famous Japanese mathematics book states that this sequence is nonzero (for n>1) if the Riemann Hypothesis is true, but this statement seems to be false.
If the n-th prime is denoted by p(n) then a(j) = number of nonzero values of floor (j^2/p(n)), over all n >= 1, (derived from A165974). - Christopher Hunt Gribble, Oct 03 2009

Examples

			For n = 5: between 5+1 = 6 and 5^2-1 = 24 there are the following six primes: 7, 11, 13, 17, 19, 23.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,j,np; for i from 1 by 1 to n do np:=0; for j from i+1 by 1 to i^2-1 do if isprime(j) then np:=np+1; fi; od; print(np); od; end: P(100);
  • Mathematica
    a[n_] := PrimePi[n^2 - 1] - PrimePi[n]; Array[a, 59] (* Robert G. Wilson v, Apr 06 2006 *)

Formula

a(n) = pi(n^2) - pi(n), cf. A000720.
a(n) = A038107(n) - A000720(n) = A073882(n) - A010051(n). - Reinhard Zumkeller, May 20 2010

A166373 Triangle read by rows for floor(j^2 / n) with n >= 2 and 1<=j

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 0, 1, 3, 0, 0, 1, 2, 4, 0, 0, 1, 2, 3, 5, 0, 0, 1, 2, 3, 4, 6, 0, 0, 1, 1, 2, 4, 5, 7, 0, 0, 0, 1, 2, 3, 4, 6, 8, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 9, 11, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 9
Offset: 2

Views

Author

Christopher Hunt Gribble, Oct 13 2009. Offset corrected Oct 18 2009

Keywords

Examples

			Part of the triangle from which the sequence is constructed is shown below.
.....j..1..2..3..4..5..6..7..8..9.10.11.12.13.14
...n
...2....0
...3....0..1
...4....0..1..2
...5....0..0..1..3
...6....0..0..1..2..4
...7....0..0..1..2..3..5
...8....0..0..1..2..3..4..6
...9....0..0..1..1..2..4..5..7
..10....0..0..0..1..2..3..4..6..8
..11....0..0..0..1..2..3..4..5..7..9
..12....0..0..0..1..2..3..4..5..6..8.10
..13....0..0..0..1..1..2..3..4..6..7..9.11
..14....0..0..0..1..1..2..3..4..5..7..8.10.12
..15....0..0..0..1..1..2..3..4..5..6..8..9.11.13
		

Crossrefs

A165974 is contained in this sequence.
Cf. A166381 (column sums), A166375 (row sums).

Programs

A165993 a(n) = sum_{j=1..prime(n)-1} floor (j^2/prime(n)).

Original entry on oeis.org

0, 1, 4, 11, 31, 44, 80, 103, 157, 252, 293, 420, 520, 575, 695, 884, 1105, 1180, 1431, 1617, 1704, 2007, 2217, 2552, 3040, 3300, 3439, 3713, 3852, 4144, 5255, 5595, 6120, 6305, 7252, 7457, 8060, 8695, 9141, 9804, 10507, 10740, 11983, 12224, 12740
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor[j^2/n],{j,n-1}],{n,Prime[Range[50]]}] (* Harvey P. Dale, Aug 10 2014 *)
  • PARI
    a(n) = sum(j=1, prime(n)-1, floor (j^2/prime(n))) \\ Michel Marcus, Jun 20 2013
    
  • PARI
    a(n)=my(p=prime(n));sum(j=1,p-1,j^2\p) \\ Charles R Greathouse IV, Jun 20 2013

Formula

a(n) = A166375(prime(n)-1). - Charles R Greathouse IV, Jun 28 2013

Extensions

Definition rephrased by R. J. Mathar, Oct 09 2009

A166264 If the n-th prime is denoted by p(n) then a(j) = frequency with which each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) occurs.

Original entry on oeis.org

174195, 6, 16, 25, 31, 34, 41, 37, 68, 45, 47, 85, 68, 95, 93, 83, 73, 101, 103, 85, 115, 109, 106, 154, 107, 132, 159, 114, 163, 179, 128, 132, 216, 164, 120, 209, 150, 119, 237, 216, 175, 228, 150, 221, 222, 192, 214, 262, 241, 185, 289, 196, 181, 379, 189
Offset: 1

Views

Author

Keywords

Comments

The table below shows a(j) for each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) for 1 <= n <= 348513, with p(348513) = 4999999 (< 5*10^6).
a(1) appears to increase indefinitely, so the static sequence starts at a(2).
j (SQN-SQR)/p(n) a(j)
-- -------------- ------
1 0 174195
2 1 6
3 3 16
4 5 25
5 7 31
6 9 34
7 11 41
8 13 37
9 15 68
10 17 45
11 19 47
12 21 85
13 23 68
14 25 95
15 27 93
16 29 83
17 31 73
18 33 101
19 35 103
20 37 85
21 39 115
22 41 109
23 43 106
24 45 154
25 47 107
26 49 132
27 51 159
28 53 114
29 55 163
30 57 179
31 59 128
32 61 132
33 63 216
34 65 164
35 67 120
36 69 209
37 71 150
38 73 119
39 75 237
40 77 216
41 79 175
42 81 228
43 83 150
44 85 221
45 87 222
46 89 192
47 91 214
48 93 262
49 95 241
50 97 185
51 99 289
52 101 196
53 103 181
54 105 379
55 107 189
56 109 209
57 111 314
58 113 239

Crossrefs

A165994 a(n) is the number of nonzero values of floor (j^2/prime(n)), over 1 <= j < prime(n).

Original entry on oeis.org

0, 1, 2, 4, 7, 9, 12, 14, 18, 23, 25, 30, 34, 36, 40, 45, 51, 53, 58, 62, 64, 70, 73, 79, 87, 90, 92, 96, 98, 102, 115, 119, 125, 127, 136, 138, 144, 150, 154, 159, 165, 167, 177, 179, 182, 184, 196, 208, 211, 213, 217, 223, 225, 235, 240, 246, 252, 254, 260
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A165974.

Programs

  • Magma
    [Floor(NthPrime(n) - Sqrt(NthPrime(n))): n in [1..60]]; // Vincenzo Librandi, Nov 13 2018
  • Mathematica
    Table[Floor[Prime[n] - Sqrt[Prime[n]]], {n, 60}] (* Vincenzo Librandi, Nov 13 2018 *)

Formula

a(n) = floor(A000040(n) - sqrt(A000040(n))). - Jon Maiga, Nov 13 2018

Extensions

Definition rephrased by R. J. Mathar, Oct 09 2009

A165995 a(n) = Sum_{p > n} floor(n^2/p), for primes p.

Original entry on oeis.org

0, 1, 2, 7, 9, 16, 19, 28, 40, 54, 60, 76, 81, 100, 121, 143, 151, 177, 184, 210, 241, 272, 281, 314, 349, 386, 424, 465, 480, 522, 538, 582, 628, 677, 728, 782, 800, 856, 910, 970, 991, 1051, 1072, 1133, 1198, 1263, 1285, 1353, 1424, 1497, 1571
Offset: 1

Views

Author

Keywords

Comments

Also the number of integers between n and n^2 with a prime factor > n. - Orson R. L. Peters, Dec 04 2017

Crossrefs

Cf. A165974.

Programs

Extensions

Definition corrected by Orson R. L. Peters, Dec 04 2017

A166127 Minimum value of j such that floor(j^2 / prime(n)) > 0.

Original entry on oeis.org

0, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A104103. - R. J. Mathar, Jul 21 2015

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[Ceiling[Sqrt[p]],{p,Prime[Range[2,80]]}]] (* Harvey P. Dale, Oct 10 2020 *)

A166131 a(j) = minimum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.

Original entry on oeis.org

1, 4, 9, 15, 20, 46, 39, 43, 52, 76, 64, 83, 118, 92, 166, 154, 128, 146, 173, 236, 228, 190, 283, 215, 434, 240, 246, 395, 607, 377, 357, 536, 349, 492, 519, 444, 722, 430, 635, 814, 598, 512, 541, 562, 700, 821, 633, 708, 893, 729, 738
Offset: 1

Views

Author

Keywords

Examples

			The table below shows for each value of a(j) the corresponding values of prime(a(j)) and (Sum of the quadratic non-residues of prime(a(j)) - Sum of the quadratic residues of prime(a(j))) / prime(a(j))
.
   j      a(j)    prime(a(j))   (SQN-SQR)/prime(a(j))
  --      ----    -----------   ---------------------
   1         1          2          0
   2         4          7          1
   3         9         23          3
   4        15         47          5
   5        20         71          7
   6        46        199          9
   7        39        167         11
   8        43        191         13
   9        52        239         15
  10        76        383         17
  11        64        311         19
  12        83        431         21
  13       118        647         23
  14        92        479         25
  15       166        983         27
  16       154        887         29
  17       128        719         31
  18       146        839         33
  19       173       1031         35
  20       236       1487         37
  21       228       1439         39
  22       190       1151         41
  23       283       1847         43
  24       215       1319         45
  25       434       3023         47
  26       240       1511         49
  27       246       1559         51
  28       395       2711         53
  29       607       4463         55
  30       377       2591         57
  31       357       2399         59
  32       536       3863         61
  33       349       2351         63
  34       492       3527         65
  35       519       3719         67
  36       444       3119         69
  37       722       5471         71
  38       430       2999         73
  39       635       4703         75
  40       814       6263         77
  41       598       4391         79
  42       512       3671         81
  43       541       3911         83
  44       562       4079         85
  45       700       5279         87
  46       821       6311         89
  47       633       4679         91
  48       708       5351         93
  49       893       6959         95
  50       729       5519         97
  51       738       5591         99
		

Crossrefs

Extensions

Sequence corrected and comments added by Christopher Hunt Gribble, Oct 10 2009
Showing 1-10 of 11 results. Next