cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166060 a(n) = 4*3^n - 3*2^n.

Original entry on oeis.org

1, 6, 24, 84, 276, 876, 2724, 8364, 25476, 77196, 233124, 702444, 2113476, 6352716, 19082724, 57297324, 171990276, 516167436, 1548895524, 4647473004, 13943991876, 41835121356, 125511655524, 376547549484, 1129667814276, 3389053774476, 10167261986724, 30501987286764
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2009

Keywords

Comments

Second binomial transform of A123932 = [1,4,4,4,4,4,4,4,...].

Crossrefs

Programs

  • Haskell
    a166060 n = a166060_list !! n
    a166060_list = map fst $ iterate (\(u, v) -> (3 * (u + v), 2 * v)) (1, 1)
    -- Reinhard Zumkeller, Jun 09 2013
  • Magma
    [4*3^n-3*2^n: n in [0..30]]; // Vincenzo Librandi, Dec 05 2012
    
  • Mathematica
    CoefficientList[Series[(1+x)/((1-2x)*(1-3x)), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 05 2012 *)
  • PARI
    a(n)=4*3^n-3<Charles R Greathouse IV, Jan 12 2012
    

Formula

a(n) = 5*a(n-1) - 6*a(n-2) for n > 1; a(0)= 1, a(1)= 6.
G.f.: (1+x)/(1-5x+6x^2).
a(n) = A217764(n,6). - Ross La Haye, Mar 27 2013
a(n) = Sum_{k = 1..2^n} A082560(n+1,k). - Reinhard Zumkeller, May 14 2015
E.g.f.: exp(2*x)*(4*exp(x) - 3). - Stefano Spezia, May 18 2024

Extensions

a(19) and a(22) corrected by Charles R Greathouse IV, Jan 12 2012