cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166137 a(n) = 5*n*(n+1)/2 - 4.

Original entry on oeis.org

1, 11, 26, 46, 71, 101, 136, 176, 221, 271, 326, 386, 451, 521, 596, 676, 761, 851, 946, 1046, 1151, 1261, 1376, 1496, 1621, 1751, 1886, 2026, 2171, 2321, 2476, 2636, 2801, 2971, 3146, 3326, 3511, 3701, 3896, 4096, 4301, 4511, 4726, 4946, 5171, 5401, 5636
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Comments

Numbers of the form 5*(h+1)*(2*h-1) + 1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 03 2017

Crossrefs

Cf. A166151.

Programs

  • Magma
    I:=[1,11,26]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012
    
  • Magma
    [5*n*(n+1)/2-4: n in [0..40]]; // Bruno Berselli, Feb 03 2017
  • Maple
    A166137:=n->5*n*(n+1)/2-4; seq(A166137(n), n=1..100); # Wesley Ivan Hurt, Nov 12 2013
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 11, 26}, 50] (* Vincenzo Librandi, Mar 15 2012 *)
    Table[5 n (n + 1)/2 - 4, {n, 47}] (* or *)
    Rest@ CoefficientList[Series[x (-1 - 8 x + 4 x^2)/(x - 1)^3, {x, 0, 47}], x] (* Michael De Vlieger, Apr 27 2016 *)
  • PARI
    for(n=1, 40, print1(5*n*(n+1)/2-4", ")); \\ Vincenzo Librandi, Mar 15 2012
    

Formula

a(n) = a(n-1) + 5*n = 3*a(n-1) - 3*a(n-2) + a(n-3) = A166151(n)-1.
O.g.f.: x*(-1 - 8*x + 4*x^2)/(x - 1)^3. [corrected by Georg Fischer, May 11 2019]
E.g.f.: (1/2)*(-8 + 10*x + 5*x^2)*exp(x). - G. C. Greubel, Apr 26 2016
Sum_{n>=1} 1/a(n) = 1/4 + (2*Pi/sqrt(185))*tan(sqrt(37/5)*Pi/2). - Amiram Eldar, Feb 20 2023

Extensions

Definition replaced by polynomial from R. J. Mathar, Oct 12 2009