cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166146 a(n) = (7*n^2 + 7*n - 12)/2.

Original entry on oeis.org

1, 15, 36, 64, 99, 141, 190, 246, 309, 379, 456, 540, 631, 729, 834, 946, 1065, 1191, 1324, 1464, 1611, 1765, 1926, 2094, 2269, 2451, 2640, 2836, 3039, 3249, 3466, 3690, 3921, 4159, 4404, 4656, 4915, 5181, 5454, 5734, 6021, 6315, 6616, 6924, 7239, 7561
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Crossrefs

Cf. A000217.

Programs

  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==a[n-1]+7n},a,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,15,36},50] (* Harvey P. Dale, Nov 01 2011 *)
    Table[(7 n^2 + 7 n - 12)/2, {n, 46}] (* Michael De Vlieger, Apr 27 2016 *)
  • PARI
    a(n)=7*n*(n+1)/2-6 \\ Charles R Greathouse IV, Jan 11 2012

Formula

a(n) = a(n-1) + 7n, a(1)=1.
From Harvey P. Dale, Nov 01 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=15, a(3)=36.
G.f.: x*(1+12*x-6*x^2)/(1-x)^3. (End)
E.g.f.: (1/2)*((-12 + 14*x + 7*x^2)*exp(x) + 12). - G. C. Greubel, Apr 26 2016
Sum_{n>=1} 1/a(n) = 1/6 + (2*Pi/sqrt(385))*tan(sqrt(55/7)*Pi/2). - Amiram Eldar, Feb 20 2023
a(n) = T(n) + 12*T(n-1) - 6*T(n-2), where T(n) = A000217(n) is the n-th triangular number. - Gary W. Adamson, Mar 12 2024

Extensions

a(35) corrected by Harvey P. Dale, Nov 01 2011