cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166149 a(n) = (5^n + 10*(-6)^n)/11.

Original entry on oeis.org

1, -5, 35, -185, 1235, -6785, 43835, -247385, 1562435, -8983985, 55857035, -325376585, 2001087635, -11762385185, 71795014235, -424666569785, 2578516996835, -15318514090385, 92674023995435, -552229446706985
Offset: 0

Views

Author

Philippe Deléham, Oct 08 2009

Keywords

Comments

From Klaus Brockhaus, Oct 14 2009: (Start)
Fourth binomial transform of A014992.
Sixth binomial transform is A001020 preceded by 1.
Lim_{n -> infinity} a(n)/a(n-1) = -6. (End)

Crossrefs

Cf. A014992 (q-integers for q=-10), A001020 (powers of 11).

Programs

Formula

a(n) = 30*a(n-2)-a(n-1), a(0)= 1, a(1)= -5.
G.f.: (1-4x)/(1+x-30*x^2).
a(n) = Sum_{k=0..n} A112555(n,k)*(-6)^k.
E.g.f.: (1/11)*(exp(5*x) + 10*exp(-6*x)). - G. C. Greubel, May 01 2016