A166384 a(n) = (5*n)!/(2*n)!.
1, 60, 151200, 1816214400, 60339831552000, 4274473667143680000, 553761949463615692800000, 118528911546113729396736000000, 38996486014317601426443730944000000, 18684042257398689569086457362513920000000, 12501158328406120266757143916231576780800000000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
Table[(5*n)!/(2*n)!, {n, 0, 25}] (* G. C. Greubel, May 12 2016 *)
Formula
G.f.: Sum_{n>=0} a(n)*x^n/((n!)^4) = hypergeom([1/5, 2/5, 3/5, 4/5],[1/2, 1, 1, 1], (3125/4)*x).
Asymptotics: a(n) = sqrt(10)*(1/2-1/(80*n)+1/(6400*n^2)+(619/3840000)*sqrt(2)/n^3+O(1/n^4))*(5^n)^5/(((1/n)^n)^3*(exp(n))^3*(2^n)^2).
From Seiichi Manyama, May 25 2025: (Start)
a(n) = RisingFactorial(2*n+1,3*n).
a(n) = (3*n)! * [x^(3*n)] 1/(1 - x)^(2*n+1). (End)
Comments