cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166442 Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319841224, 118663642324032484512, 5577191189229524281440, 262127985893787524168352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170767, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    f:= func< p,q,x | (1+x)*(1-x^11)/(1-(q+1)*x+(p+q)*x^11-p*x^12) >;
    Coefficients(R!( f(1081,46,x) )); // G. C. Greubel, Jul 26 2024
    
  • Mathematica
    With[{num=Total[2t^Range[10] ]+t^11+1,den=Total[-46 t^Range[10]]+ 1081t^11+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jul 21 2011 *)
    CoefficientList[Series[(x^11 + 2 x^10 + 2 x^9 + 2 x^8 + 2 x^7 + 2 x^6 + 2 x^5 + 2 x^4 + 2 x^3 + 2 x^2 + 2 x + 1)/(1081 x^11 - 46 x^10 - 46 x^9 - 46 x^8 - 46 x^7 - 46 x^6 - 46 x^5 - 46 x^4 - 46 x^3 - 46 x^2 - 46 x + 1), {x, 0, 20}], x] (* Vincenzo Librandi, May 10 2015 *)
    coxG[{11, 1081, -46, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 26 2024 *)
  • SageMath
    def f(p,q,x): return (1+x)*(1-x^11)/(1-(q+1)*x+(p+q)*x^11-p*x^12)
    def A166442_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(1081,46,x) ).list()
    A166442_list(30) # G. C. Greubel, Jul 26 2024

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
From G. C. Greubel, Jul 26 2024: (Start)
a(n) = 46*Sum_{j=1..10} a(n-j) - 1081*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 47*x + 1127*x^11 - 1081*x^12). (End)