A166454 Triangle read by rows: T(n, k) = (1/2)*(A007318(n,k) - A047999(n,k)).
1, 1, 1, 2, 3, 2, 2, 5, 5, 2, 3, 7, 10, 7, 3, 3, 10, 17, 17, 10, 3, 4, 14, 28, 35, 28, 14, 4, 4, 18, 42, 63, 63, 42, 18, 4, 5, 22, 60, 105, 126, 105, 60, 22, 5, 5, 27, 82, 165, 231, 231, 165, 82, 27, 5, 6, 33, 110, 247, 396, 462, 396, 247, 110, 33, 6
Offset: 2
Examples
First few rows of the triangle: 1; 1, 1; 2, 3, 2; 2, 5, 5, 2; 3, 7, 10, 7, 3; 3, 10, 17, 17, 10, 3; 4, 14, 28, 35, 28, 14, 4; 4, 18, 42, 63, 63, 42, 18, 4; 5, 22, 60, 105, 126, 105, 60, 22, 5; 5, 27, 82, 165, 231, 231, 165, 82, 27, 5; 6, 33, 110, 247, 396, 462, 396, 247, 110, 33, 6; ...
Links
- Reinhard Zumkeller, Rows n = 2..125 of triangle, flattened
Programs
-
GAP
Flat(List([2..12],n->List([1..n-1],m->Int(Binomial(n,m)/2)))); # Muniru A Asiru, Apr 14 2019
-
Haskell
Following Bagula's formula a166454 n k = a166454_tabl !! (n-2) !! (k-1) a166454_row n = a166454_tabl !! (n-2) a166454_tabl = map (map (flip div 2) . init . tail) $ drop 2 a007318_tabl -- Reinhard Zumkeller, Mar 04 2015
-
Magma
[[Floor(Binomial(n,k)/2): k in [1..n-1]]: n in [2..12]]; // G. C. Greubel, Apr 16 2019
-
Maple
seq(seq(floor(binomial(n,m)/2),m=1..n-1),n=2..12); # Muniru A Asiru, Apr 14 2019
-
Mathematica
T[n_, m_] = Floor[Binomial[n, m]/2]; Table[T[n, m], {n, 2, 12}, {m, 1, n-1}]//Flatten (* Roger L. Bagula, Mar 07 2010*)
-
PARI
{T(n,k) = binomial(n,k)\2 }; for(n=2,12, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 16 2019
-
Sage
[[floor(binomial(n,k)/2) for k in (1..n-1)] for n in (2..12)] # G. C. Greubel, Apr 16 2019
Formula
T(n, m) = floor(binomial(n, m)/2). - Roger L. Bagula, Mar 07 2010
Comments