A166470 a(n) = 2^F(n+1)*3^F(n), where F(n) is the n-th Fibonacci number, A000045(n).
2, 6, 12, 72, 864, 62208, 53747712, 3343537668096, 179707499645975396352, 600858794305667322270155425185792, 107978831564966913814384922944738457859243070439030784
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..16
Crossrefs
Programs
-
Magma
[2^Fibonacci(n+1)*3^Fibonacci(n): n in [0..14]]; // G. C. Greubel, Jul 29 2024
-
Mathematica
3^First[#] 2^Last[#]&/@Partition[Fibonacci[Range[0,12]],2,1] (* Harvey P. Dale, Aug 20 2012 *)
-
PARI
a(n)=2^fibonacci(n+1)*3^fibonacci(n) \\ Charles R Greathouse IV, Sep 19 2022
-
SageMath
[2^fibonacci(n+1)*3^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024
Formula
For n > 1, a(n) = a(n-1)*a(n-2).
a(n) = 2 * A174666(n+1). - Alois P. Heinz, Sep 16 2022
a(n) = 2^(Fibonacci(n+1) + c*Fibonacci(n)), with c=log_2(3). Cf. A000301 (c=1) & A010098 (c=2). - Andrea Pinos, Sep 29 2022
a(n) = A115033(2*n+1). - David Radcliffe, May 31 2025
Extensions
Typo corrected by Matthew Vandermast, Nov 07 2009