cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166474 a(1)=1; a(2)=2; for n>2, a(n) = a(n-1) + A000217(n-1)*a(n-2).

Original entry on oeis.org

1, 2, 5, 17, 67, 322, 1729, 10745, 72989, 556514, 4570909, 41300833, 397831735, 4156207538, 45928539713, 544673444273, 6790954845241, 90125991819010, 1251379270355221, 18375317715967121, 281164964490563531, 4525863356878968482
Offset: 1

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Comments

Equals the eigensequence of an infinite lower triangular matrix with 1's in the main diagonal and the triangular series in the subdiagonal.

Crossrefs

Programs

  • Haskell
    a166474 n = a166474_list !! (n-1)
    a166474_list = 1 : 2 : zipWith (+)
       (tail a166474_list) (zipWith (*) a166474_list $ drop 2 a000217_list)
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [n le 2 select n else Self(n-1) + Binomial(n,2)*Self(n-2): n in [1..41]]; // G. C. Greubel, Aug 02 2024
    
  • Mathematica
    Rest[CoefficientList[Series[-2*E^(Sqrt[2]*ArcTanh[x/Sqrt[2]])/(x^2-2), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 19 2012 *)
  • SageMath
    @CachedFunction
    def A166474(n):
        if n<3: return n
        else: return A166474(n-1) + binomial(n,2)*A166474(n-2)
    [A166474(n) for n in range(1,41)] # G. C. Greubel, Aug 02 2024

Formula

a(n+1) = A166469(A066120(n)).
E.g.f.: -2*exp(sqrt(2)*arctanh(x/sqrt(2)))/(x^2-2) = ((sqrt(2) + x)^2/(2 - x^2))^(1/sqrt(2))*2/(2 - x^2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ n!*2^(1/sqrt(2)-n/2)*n^(1/sqrt(2))/(2*Gamma(1+1/sqrt(2))). - Vaclav Kotesovec, Oct 19 2012

Extensions

More terms from Sean A. Irvine, Jun 16 2011