cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166633 Totally multiplicative sequence with a(p) = 3*(p-1) for prime p.

Original entry on oeis.org

1, 3, 6, 9, 12, 18, 18, 27, 36, 36, 30, 54, 36, 54, 72, 81, 48, 108, 54, 108, 108, 90, 66, 162, 144, 108, 216, 162, 84, 216, 90, 243, 180, 144, 216, 324, 108, 162, 216, 324, 120, 324, 126, 270, 432, 198, 138, 486, 324, 432
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
    DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*3^(PrimeOmega[m]), {m, 1, 100}] (* G. C. Greubel, May 20 2016 *)
    f[p_, e_] := (3*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = 3*(f[k,1]-1)); factorback(f);} \\ Michel Marcus, May 20 2016

Formula

Multiplicative with a(p^e) = (3*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (3*(p(k)-1))^e(k).
a(n) = A165824(n) * A003958(n) = 3^bigomega(n) * A003958(n) = 3^A001222(n) * A003958(n).