A166692 Triangle T(n,k) read by rows: T(n,k) = 2^(k-1), k>0, T(n,0) = (n+1) mod 2.
1, 0, 1, 1, 1, 2, 0, 1, 2, 4, 1, 1, 2, 4, 8, 0, 1, 2, 4, 8, 16, 1, 1, 2, 4, 8, 16, 32, 0, 1, 2, 4, 8, 16, 32, 64, 1, 1, 2, 4, 8, 16, 32, 64, 128, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Offset: 0
Examples
Triangle begins as: 1; 0, 1; 1, 1, 2; 0, 1, 2, 4; 1, 1, 2, 4, 8; 0, 1, 2, 4, 8, 16;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
A166692:= func< n,k | k eq 0 select ((n+1) mod 2) else 2^(k-1) >; [A166692(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 24 2023
-
Mathematica
Join[{1,0},Flatten[Riffle[Table[2^Range[0,n],{n,0,10}],{1,0}]]] (* Harvey P. Dale, Jan 18 2015 *)
-
SageMath
def A166692(n,k): return ((n+1)%2) if (k==0) else 2^(k-1) flatten([[A166692(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 24 2023
Formula
Extensions
More terms from Harvey P. Dale, Jan 18 2015
Comments