cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A378932 Array read by antidiagonals: T(m,n) is the number of minimal edge cuts in the grid graph P_m X P_n.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 3, 15, 15, 3, 4, 28, 53, 28, 4, 5, 45, 146, 146, 45, 5, 6, 66, 356, 627, 356, 66, 6, 7, 91, 809, 2471, 2471, 809, 91, 7, 8, 120, 1759, 9292, 16213, 9292, 1759, 120, 8, 9, 153, 3716, 33878, 103196, 103196, 33878, 3716, 153, 9, 10, 190, 7702, 120771, 642364, 1123743, 642364, 120771, 7702, 190, 10
Offset: 1

Views

Author

Andrew Howroyd, Dec 11 2024

Keywords

Comments

T(m,n) is the number of partitionings of an m X n checkerboard into two edgewise-connected sets.

Examples

			Table starts:
===================================================
m\n | 1  2    3     4      5        6         7 ...
----+----------------------------------------------
  1 | 0  1    2     3      4        5         6 ...
  2 | 1  6   15    28     45       66        91 ...
  3 | 2 15   53   146    356      809      1759 ...
  4 | 3 28  146   627   2471     9292     33878 ...
  5 | 4 45  356  2471  16213   103196    642364 ...
  6 | 5 66  809  9292 103196  1123743  12028981 ...
  7 | 6 91 1759 33878 642364 12028981 221984391 ...
  ...
		

Crossrefs

Main diagonal is A068416.
Rows 1..4 are A001477(n-1), A000384, A378933, A378934.
Rows 3..8 multiplied by 2 are A166761, A166766, A166769, A166771, A166773, A166774.

Formula

T(m,n) = T(n,m).

A383874 a(n) = (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2).

Original entry on oeis.org

1, 18, 4200, 3175200, 5137292160, 14544244915200, 64008493310361600, 405192226643043840000, 3493057136053143859200000, 39378260464472988708249600000, 562659674639968187756457984000000, 9940535265182157971578474463232000000, 212816707229761791940688046273331200000000
Offset: 0

Views

Author

Karol A. Penson, May 22 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A383874[n_] := (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2);
    Array[A383874, 15, 0] (* Paolo Xausa, May 26 2025 *)
  • PARI
    a(n) = (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2); \\ Michel Marcus, May 22 2025

Formula

O.g.f.: hypergeom([1/3, 2/3, 2/3, 1, 1, 4/3], [1/2, 2, 2], (729*x)/4).
E.g.f.: hypergeom([1/3, 2/3, 2/3, 1, 1, 4/3], [1/2, 2, 2, 1], (729*x)/4).
a(n) = Integral_{x>=0} x^n*W(x)*dx, n>=0, with W(x) = MeijerG([[],[-1/2,1,1]],[[0,-1/3,-1/3,1/3,-2/3],[]],4*x/729)/(81*Pi^(3/2)), where MeijerG is the Meijer G - function. Apparently W(x) cannot be represented by any other simpler functions. W(x) is a positive function on (0,oo), is singular at x = 0 and goes monotonically to zero as x -> oo. Thus a(n) is a positive definite sequence.
W(x) is the solution of the Stieltjes moment problem and it may be non-unique.
a(n) ~ 3^(6*n+2) * n^(2*n - 3/2) / (sqrt(Pi) * 2^(2*n+1) * exp(2*n)). - Vaclav Kotesovec, May 24 2025
Showing 1-2 of 2 results.