A166942 One fifth of product plus sum of five consecutive nonnegative numbers.
2, 27, 148, 509, 1350, 3031, 6056, 11097, 19018, 30899, 48060, 72085, 104846, 148527, 205648, 279089, 372114, 488395, 632036, 807597, 1020118, 1275143, 1578744, 1937545, 2358746, 2850147, 3420172, 4077893, 4833054, 5696095
Offset: 0
Examples
a(0) = (0*1*2*3*4 + 0 + 1 + 2 + 3 + 4)/5 = (0 + 10)/5 = 2. a(1) = (1*2*3*4*5 + 1 + 2 + 3 + 4 + 5)/5 = (120 + 15)/5 = 27.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
[ (&*s + &+s)/5 where s is [n..n+4]: n in [0..29] ]; // Klaus Brockhaus, Nov 14 2009
-
Mathematica
Table[((n+4)*(n+3)*(n+2)*(n+1)*n+(n+4)+(n+3)+(n+2)+(n+1)+n)/5, {n,0,100}] (Total[#]+Times@@#)/5&/@Partition[Range[0,100],5,1] (* Harvey P. Dale, Mar 05 2011 *)
Formula
a(n) = (n^5 + 10n^4 + 35n^3 + 50n^2 + 29n + 10)/5. - Charles R Greathouse IV, Nov 02 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24 for n > 4; a(0)=2, a(1)=27, a(2)=148, a(3)=509, a(4)=1350. - Klaus Brockhaus, Nov 14 2009
G.f.: (2+15*x+16*x^2-14*x^3+6*x^4-x^5)/(1-x)^6. - Klaus Brockhaus, Nov 14 2009
Extensions
Edited and offset corrected by Klaus Brockhaus, Nov 14 2009
Comments