A166943 One third of product plus sum of six consecutive nonnegative numbers.
5, 247, 1689, 6731, 20173, 50415, 110897, 221779, 411861, 720743, 1201225, 1921947, 2970269, 4455391, 6511713, 9302435, 13023397, 17907159, 24227321, 32303083, 42504045, 55255247, 71042449, 90417651, 114004853, 142506055
Offset: 0
Examples
a(0) = (0*1*2*3*4*5+0+1+2+3+4+5)/3 = (0+15)/3 = 5. a(1) = (1*2*3*4*5*6+1+2+3+4+5+6)/3 = (720+21)/3 = 247.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[ (&*s + &+s)/3 where s is [n..n+5]: n in [0..25] ]; // Klaus Brockhaus, Nov 14 2009
-
Mathematica
lst={};Do[p=(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n+(n+5)+(n+4)+(n+3)+(n+2)+(n+1)+n;AppendTo[lst,p/3],{n,0,5!}];lst (Plus@@#+Times@@#)/3&/@Partition[Range[0,30],6,1] (* Harvey P. Dale, Nov 10 2009 *)
Formula
a(n) = (n^6 + 15n^5 + 85n^4 + 225n^3 + 274n^2 + 126n + 15)/3. - Charles R Greathouse IV, Nov 04 2009
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6)+240 for n > 5; a(0)=5, a(1)=247, a(2)=1689, a(3)=6731, a(4)=20173, a(5)=50415. - Klaus Brockhaus, Nov 14 2009
G.f.: (5+212*x+65*x^2-80*x^3+55*x^4-20*x^5+3*x^6)/(1-x)^7. - Klaus Brockhaus, Nov 14 2009
Extensions
Edited and offset corrected by Klaus Brockhaus, Nov 14 2009
Comments