cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166943 One third of product plus sum of six consecutive nonnegative numbers.

Original entry on oeis.org

5, 247, 1689, 6731, 20173, 50415, 110897, 221779, 411861, 720743, 1201225, 1921947, 2970269, 4455391, 6511713, 9302435, 13023397, 17907159, 24227321, 32303083, 42504045, 55255247, 71042449, 90417651, 114004853, 142506055
Offset: 0

Views

Author

Keywords

Comments

a(n) = ((n*...*(n+5))+(n+...+(n+5)))/3, n >= 0.
Binomial transform of 5, 242, 1200, 2400, 2400, 1200, 240, 0, 0, 0, 0, ....

Examples

			a(0) = (0*1*2*3*4*5+0+1+2+3+4+5)/3 = (0+15)/3 = 5.
a(1) = (1*2*3*4*5*6+1+2+3+4+5+6)/3 = (720+21)/3 = 247.
		

Crossrefs

Cf. A001477 (nonnegative integers), A028387 (n+(n+1)^2), A167875, A166941, A166942.

Programs

  • Magma
    [ (&*s + &+s)/3 where s is [n..n+5]: n in [0..25] ]; // Klaus Brockhaus, Nov 14 2009
  • Mathematica
    lst={};Do[p=(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n+(n+5)+(n+4)+(n+3)+(n+2)+(n+1)+n;AppendTo[lst,p/3],{n,0,5!}];lst
    (Plus@@#+Times@@#)/3&/@Partition[Range[0,30],6,1] (* Harvey P. Dale, Nov 10 2009 *)

Formula

a(n) = (n^6 + 15n^5 + 85n^4 + 225n^3 + 274n^2 + 126n + 15)/3. - Charles R Greathouse IV, Nov 04 2009
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6)+240 for n > 5; a(0)=5, a(1)=247, a(2)=1689, a(3)=6731, a(4)=20173, a(5)=50415. - Klaus Brockhaus, Nov 14 2009
G.f.: (5+212*x+65*x^2-80*x^3+55*x^4-20*x^5+3*x^6)/(1-x)^7. - Klaus Brockhaus, Nov 14 2009

Extensions

Edited and offset corrected by Klaus Brockhaus, Nov 14 2009