cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166988 Products n of a square of a prime and a cube of a prime such that n-1 and n+1 are semiprimes.

Original entry on oeis.org

392, 14792, 19652, 48668, 55112, 197192, 291848, 783752, 908552, 963272, 1203052, 1541768, 1670792, 5081672, 5903048, 8193532, 9732872, 10089032, 10285412, 12241352, 13333448, 13960328, 14087432, 14818568, 15882248, 16290632
Offset: 1

Views

Author

Keywords

Comments

Intersection of A143610 and A124936.

Examples

			392 = 7^2*2^3; 391 = 17*23 and 393 = 3*131 are semiprimes, hence 392 is in the sequence.
14792 = 2^3*43^2 is in the sequence because 14791=7*2113 and 14793=3*4931 are semiprimes.
		

Crossrefs

Cf. A001248 (squares of primes), A030078 (cubes of primes), A001358 (semiprimes).

Programs

  • Mathematica
    f2[n_]:=Last/@FactorInteger[n]=={2,3}||Last/@FactorInteger[n]=={3,2}; f1[n_]:=Plus@@Last/@FactorInteger[n]==2; lst={};Do[If[f2[n],If[f1[n-1]&&f1[n+1],AppendTo[lst,n]]],{n,10!}];lst
    With[{prs=Prime[Range[300]]},Union[Select[Times@@@Tuples[{prs^2, prs^3}], PrimeOmega[#-1] == PrimeOmega[#+1]==2&]]] (* Harvey P. Dale, Aug 13 2013 *)
  • PARI
    {m=17000000; v=[]; forprime(j=2, sqrtint(m\8), a=j^2; g=sqrtn(m\a, 3); forprime(k=2, g, n=a*k^3; if(nKlaus Brockhaus, Oct 29 2009

Extensions

Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009