cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167032 a(n) = 20*a(n-1) - 64*a(n-2) + 2 for n > 1; a(0) = 1, a(1) = 21.

Original entry on oeis.org

1, 21, 358, 5818, 93450, 1496650, 23952202, 383258442, 6132227914, 98116017994, 1569857773386, 25117730316106, 401883708825418, 6430139436277578, 102882231360724810, 1646115703292731210, 26337851258768236362
Offset: 0

Views

Author

Klaus Brockhaus, Oct 27 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 16.

Crossrefs

Programs

  • Magma
    [ n le 2 select 20*n-19 else 20*Self(n-1)-64*Self(n-2)+2: n in [1..17] ];
  • Maple
    A167032:=n->(257*16^n - 85*4^n + 8)/180: seq(A167032(n), n=0..25); # Wesley Ivan Hurt, May 30 2016
  • Mathematica
    LinearRecurrence[{21, -84, 64}, {1,21,358}, 50] (* G. C. Greubel, May 30 2016 *)
    RecurrenceTable[{a[0]==1,a[1]==21,a[n]==20a[n-1]-64a[n-2]+2},a,{n,20}] (* Harvey P. Dale, Oct 27 2019 *)

Formula

a(n) = (257*16^n - 85*4^n + 8)/180.
G.f.: (1+x^2)/((1-x)*(1-4*x)*(1-16*x)).
From G. C. Greubel, May 30 2016: (Start)
a(n) = 21*a(n-1) - 84*a(n-2) + 64*a(n-3) for n>2.
E.g.f.: (1/180)*(257*exp(16*x) - 85*exp(4*x) + 8*exp(x)). (End)