A115024 Natural numbers n such that the number of prime factors of n (counted with multiplicity) is equal to the number of decimal digits of n.
2, 3, 5, 7, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 147, 148, 153, 154, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195
Offset: 1
Examples
25 = 5*5 and 25 has two digits. 116 = 2*2*29 and 116 has three digits.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[2, 300], Sum[FactorInteger[ # ][[i]][[2]], {i, 1, Length[FactorInteger[ # ]]}] == Floor[Log[10, # ] + 1] &] (* Stefan Steinerberger, Feb 27 2006 *) Select[Range[200],PrimeOmega[#]==IntegerLength[#]&] (* Harvey P. Dale, Jul 28 2020 *)
-
PARI
is(n)=#Str(n)==bigomega(n) \\ Charles R Greathouse IV, Feb 04 2013
Extensions
More terms from Stefan Steinerberger, Feb 27 2006
Comments