cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167119 Primes congruent to 2, 3, 5, 7 or 11 (mod 13).

Original entry on oeis.org

2, 3, 5, 7, 11, 29, 31, 37, 41, 59, 67, 83, 89, 107, 109, 137, 163, 167, 193, 197, 211, 223, 239, 241, 263, 271, 293, 317, 349, 353, 367, 379, 397, 401, 419, 421, 431, 449, 457, 479, 499, 509, 523, 557, 577, 587, 601, 613, 631, 653, 661, 683, 691, 709, 733, 739, 743, 757
Offset: 1

Views

Author

Keywords

Comments

Primes which have a remainder mod 13 that is prime.
Union of A141858, A100202, A102732, A140371 and A140373. - R. J. Mathar, Oct 29 2009

Examples

			11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.
		

Crossrefs

Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135: primes p such that p mod k is prime, for k = 3..12 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // Klaus Brockhaus, Oct 28 2009
  • Mathematica
    f[n_]:=PrimeQ[Mod[n,13]]; lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,6,6!}];lst
    Select[Prime[Range[4000]],MemberQ[{2, 3, 5, 7, 11},Mod[#,13]]&] (* Vincenzo Librandi, Aug 05 2012 *)
  • PARI
    {forprime(p=2, 740, if(isprime(p%13), print1(p, ",")))} \\ Klaus Brockhaus, Oct 28 2009
    

Extensions

Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009 and Oct 29 2009