A167119 Primes congruent to 2, 3, 5, 7 or 11 (mod 13).
2, 3, 5, 7, 11, 29, 31, 37, 41, 59, 67, 83, 89, 107, 109, 137, 163, 167, 193, 197, 211, 223, 239, 241, 263, 271, 293, 317, 349, 353, 367, 379, 397, 401, 419, 421, 431, 449, 457, 479, 499, 509, 523, 557, 577, 587, 601, 613, 631, 653, 661, 683, 691, 709, 733, 739, 743, 757
Offset: 1
Examples
11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // Klaus Brockhaus, Oct 28 2009
-
Mathematica
f[n_]:=PrimeQ[Mod[n,13]]; lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,6,6!}];lst Select[Prime[Range[4000]],MemberQ[{2, 3, 5, 7, 11},Mod[#,13]]&] (* Vincenzo Librandi, Aug 05 2012 *)
-
PARI
{forprime(p=2, 740, if(isprime(p%13), print1(p, ",")))} \\ Klaus Brockhaus, Oct 28 2009
Extensions
Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009 and Oct 29 2009
Comments