A167166 a(n) = n^7 mod 16.
0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
Table[Mod[n^7, 16], {n, 0, 10}] (* G. C. Greubel, Jun 04 2016 *) PowerMod[Range[0,100],7,16] (* or *) PadRight[{},100,{0,1,0,11,0,13,0,7,0,9,0,3,0,5,0,15}] (* Harvey P. Dale, Jul 29 2018 *)
-
PARI
a(n)=n^7%16 \\ Charles R Greathouse IV, Apr 06 2016
-
Sage
[power_mod(n,7,16)for n in range(0, 93)] #
Formula
From R. J. Mathar, Sep 30 2013: (Start)
a(n) = a(n-16).
G.f. -x*(1 +11*x^2 +13*x^4 +7*x^6 +9*x^8 +3*x^10 +5*x^12 +15*x^14) / ( (x-1)*(1+x)*(1+x^2)*(1+x^4)*(1+x^8) ). (End)
Comments