cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A166580 Prime numbers containing the string 222.

Original entry on oeis.org

2221, 12227, 22229, 22247, 22259, 22271, 22273, 22277, 22279, 22283, 22291, 42221, 42223, 42227, 52223, 72221, 72223, 72227, 72229, 82223, 92221, 92227, 102229, 112223, 122201, 122203, 122207, 122209, 122219, 122231, 122251, 122263, 122267, 122273, 122279, 122299, 132229, 142223
Offset: 1

Views

Author

Vincenzo Librandi, Nov 01 2009

Keywords

Crossrefs

Programs

  • Magma
    res := []; for n in [1..15000] do p := NthPrime(n); digits := IntegerToSequence(p); for i in [1..#digits - 2] do if digits[i..i+2] eq [2,2,2] then Append(~res, p); break; end if; end for; end for; res; // Vincenzo Librandi, Jul 16 2025
  • Mathematica
    p222Q[n_] := Module[{idn = IntegerDigits[n]}, MemberQ[Partition[idn, 3, 1], {2, 2, 2}]]; Select[Prime[Range[15000]], p222Q] (* Vincenzo Librandi Sep 14 2012 *)
    Select[Prime[Range[12000]],SequenceCount[IntegerDigits[#],{2,2,2}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 08 2017 *)
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,222) \\ Charles R Greathouse IV, Jun 20 2014
    

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A243527 Prime numbers containing the string 111.

Original entry on oeis.org

1117, 2111, 4111, 8111, 10111, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 16111, 22111, 25111, 26111, 28111, 35111, 40111, 41113, 41117, 44111, 47111, 50111, 58111, 65111, 68111, 70111, 71119, 79111, 80111
Offset: 1

Views

Author

Vincenzo Librandi, Jun 06 2014

Keywords

Crossrefs

Cf. prime numbers containing the string kkk: this sequence (k=1), A166580 (k=2), A166581 (k=3), A166582 (k=4), A167281 (k=5), A131645 (k=6), A167282 (k=7), A167290 (k=8), A167292 (k=9).

Programs

  • Mathematica
    Select[Prime[Range[90000]], !StringFreeQ[ToString[#], "111"]&]
  • PARI
    contains(n,k)=my(N=digits(n),K=digits(k)); for(i=0,#N-#K, for(j=1,#K,if(N[i+j]!=K[j],next(2))); return(1)); 0
    is(n)=isprime(n) && contains(n,111) \\ Charles R Greathouse IV, Jun 20 2014

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Jun 20 2014

A386247 Primes containing 000 as a substring.

Original entry on oeis.org

10007, 10009, 40009, 70001, 70003, 70009, 90001, 90007, 100003, 100019, 100043, 100049, 100057, 100069, 130003, 140009, 150001, 160001, 160009, 170003, 180001, 180007, 200003, 200009, 200017, 200023, 200029, 200033, 200041, 200063, 200087, 220009, 230003, 240007
Offset: 1

Views

Author

Alois P. Heinz, Jul 16 2025

Keywords

Comments

Differs from A164968 first at n=10: a(10) = 100019 < 200003 = A164968(10).

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1230, 25000]], StringContainsQ[IntegerString[#], "000"] &] (* Paolo Xausa, Jul 19 2025 *)

A230202 Primes that end in 999.

Original entry on oeis.org

1999, 2999, 4999, 8999, 13999, 25999, 32999, 35999, 41999, 49999, 52999, 56999, 59999, 70999, 71999, 73999, 77999, 79999, 85999, 94999, 98999, 100999, 101999, 104999, 107999, 133999, 134999, 136999, 137999, 139999, 143999, 157999, 161999, 164999, 172999, 179999
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 11 2013

Keywords

Comments

37 does not divide a(n) - 999 for any n because 37 divides 999 and a(n) is prime. The sequence is infinite.

References

  • Joseph B. Dence and Thomas P. Dence, Elements of the Theory of Numbers, Academic Press, San Diego, 1999, p. 35.

Crossrefs

Subsequence of A167292.

Programs

  • Magma
    [p : p in PrimesUpTo(18*10^4) | p mod 1000 eq 999];
    
  • Magma
    [n : n in [999..18*10^4 by 1000] | IsPrime(n)];
Showing 1-4 of 4 results.