cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167332 Totally multiplicative sequence with a(p) = 2*(4*p-1) = 8*p-2 for prime p.

Original entry on oeis.org

1, 14, 22, 196, 38, 308, 54, 2744, 484, 532, 86, 4312, 102, 756, 836, 38416, 134, 6776, 150, 7448, 1188, 1204, 182, 60368, 1444, 1428, 10648, 10584, 230, 11704, 246, 537824, 1892, 1876, 2052, 94864, 294, 2100, 2244, 104272, 326, 16632, 342, 16856
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Maple
    f:=n -> mul((8*t[1]-2)^t[2],t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Jun 06 2016
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((4*fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
    f[p_, e_] := (8*p-2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)
  • PARI
    a(n) = {my(f=factor(n)); for (k=1, #f~, f[k,1] = 8*f[k,1]-2;); factorback(f);} \\ Michel Marcus, Jun 06 2016

Formula

Multiplicative with a(p^e) = (2*(4*p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(4*p(k)-1))^e(k).
a(n) = A061142(n) * A166653(n) = 2^bigomega(n) * A166653(n) = 2^A001222(n) * A166653(n).