A167344 Totally multiplicative sequence with a(p) = (p-1)*(p+1) = p^2-1 for prime p.
1, 3, 8, 9, 24, 24, 48, 27, 64, 72, 120, 72, 168, 144, 192, 81, 288, 192, 360, 216, 384, 360, 528, 216, 576, 504, 512, 432, 840, 576, 960, 243, 960, 864, 1152, 576, 1368, 1080, 1344, 648, 1680, 1152, 1848, 1080, 1536, 1584, 2208, 648, 2304, 1728
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = f[k,1]^2-1); factorback(f); \\ Michel Marcus, Jan 31 2021
Formula
Multiplicative with a(p^e) = ((p-1)*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)*(p(k)+1))^e(k).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 - 2)) = 1.884261780923861906728291280746835210118330549695678826316037127832097567... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - 1/(p^3 - p^2 + 1)) = 0.2487962948... . - Amiram Eldar, Nov 12 2022