cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167379 Let p and q be twin primes, excluding the pair (3,5). Then p+q is always divisible by 6 and we set a(n) = (p+q)/6.

Original entry on oeis.org

2, 4, 6, 10, 14, 20, 24, 34, 36, 46, 50, 60, 64, 66, 76, 80, 90, 94, 104, 116, 140, 144, 154, 174, 190, 200, 206, 214, 220, 270, 274, 276, 286, 294, 340, 344, 350, 354, 364, 384, 410, 426, 430, 434, 440, 476, 484, 494, 496, 536, 540, 556, 566, 574, 596, 624, 626
Offset: 1

Views

Author

Tanin (Mirza Sabbir Hossain Beg) (mirzasabbirhossainbeg(AT)yahoo.com), Nov 02 2009

Keywords

Comments

By definition, q = p+2. Hence (p+q)/6 = (p+p+2)/6 = (2p+2)/6 = (p+1)/3. Thus a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009

Examples

			First (lesser of twin prime pair) excluding (3,5) = 5; (5+1)/3 = 2, hence A167379(1) = 2. The 10th (lesser of twin prime pair) excluding (3,5) = 137; (137+1)/3 = 46, hence A167379(10)= 46. - _Jonathan Vos Post_, Nov 03 2009
		

Crossrefs

Cf. A002822. [Zak Seidov, Nov 02 2009]

Programs

  • Magma
    [2*n: n in [1..630] | IsPrime(6*n+1) and IsPrime(6*n-1)]; // Vincenzo Librandi, Jun 13 2016
  • Mathematica
    Total[#]/6&/@Select[Partition[Prime[Range[3,500]],2,1],#[[2]]-#[[1]] == 2&] (* Harvey P. Dale, Jan 30 2013 *)
    2 Select[Range[35000], PrimeQ[6 # - 1] && PrimeQ[6 # + 1] &] (* Vincenzo Librandi, Jun 13 2016 *)

Formula

a(n) = 2*A002822(n). - R. J. Mathar, Nov 09 2009
a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009

Extensions

Edited (but not checked) by N. J. A. Sloane, Nov 02 2009
Extended by R. J. Mathar, Nov 09 2009