A167401 a(n) is the smallest number k such that n*k has twice as many divisors as k.
1, 1, 2, 1, 12, 1, 4, 3, 20, 1, 72, 1, 28, 45, 8, 1, 108, 1, 160, 63, 44, 1, 288, 5, 52, 9, 224, 1, 10800, 1, 16, 99, 68, 175, 864, 1, 76, 117, 800, 1, 21168, 1, 352, 675, 92, 1, 1152, 7, 400, 153, 416, 1, 648, 275, 1568, 171, 116, 1, 259200
Offset: 2
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Crossrefs
Cf. A139315.
Programs
-
Maple
A167401 := proc(n) if isprime(n) then 1; else for a from 2 do if numtheory[tau](n*a) = 2*numtheory[tau](a) then return a ; end if; end do ; fi; end: seq(A167401(n),n=2..60) ; # R. J. Mathar, Nov 04 2009
-
Mathematica
tmd[n_]:=Module[{a=1},While[DivisorSigma[0,a*n]!=2DivisorSigma[0,a],a++];a]; Array[tmd,60,2] (* Harvey P. Dale, Apr 20 2013 *)
-
PARI
a(n) = {my(k=1); while (numdiv(n*k) != 2*numdiv(k), k++); k;} \\ Michel Marcus, Feb 10 2017
Extensions
Extended by Ray Chandler, Nov 10 2009
Extended beyond a(10) by R. J. Mathar, Nov 04 2009
Comments