cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167401 a(n) is the smallest number k such that n*k has twice as many divisors as k.

Original entry on oeis.org

1, 1, 2, 1, 12, 1, 4, 3, 20, 1, 72, 1, 28, 45, 8, 1, 108, 1, 160, 63, 44, 1, 288, 5, 52, 9, 224, 1, 10800, 1, 16, 99, 68, 175, 864, 1, 76, 117, 800, 1, 21168, 1, 352, 675, 92, 1, 1152, 7, 400, 153, 416, 1, 648, 275, 1568, 171, 116, 1, 259200
Offset: 2

Views

Author

J. Lowell, Nov 02 2009

Keywords

Comments

a(n) is 1 for all prime numbers n.
From Robert Israel, Feb 09 2017: (Start)
All prime factors of a(n) divide n.
If n=p^k is a prime power, a(n) = p^(k-1).
If n=p*q with pA006881, a(n) = p^2*q. (End)

Crossrefs

Cf. A139315.

Programs

  • Maple
    A167401 := proc(n) if isprime(n) then 1; else for a from 2 do if numtheory[tau](n*a) = 2*numtheory[tau](a) then return a ; end if; end do ; fi; end: seq(A167401(n),n=2..60) ; # R. J. Mathar, Nov 04 2009
  • Mathematica
    tmd[n_]:=Module[{a=1},While[DivisorSigma[0,a*n]!=2DivisorSigma[0,a],a++];a]; Array[tmd,60,2] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    a(n) = {my(k=1); while (numdiv(n*k) != 2*numdiv(k), k++); k;} \\ Michel Marcus, Feb 10 2017

Extensions

Extended by Ray Chandler, Nov 10 2009
Extended beyond a(10) by R. J. Mathar, Nov 04 2009