A167616 a(n) = Fibonacci(n) - 5.
0, 3, 8, 16, 29, 50, 84, 139, 228, 372, 605, 982, 1592, 2579, 4176, 6760, 10941, 17706, 28652, 46363, 75020, 121388, 196413, 317806, 514224, 832035, 1346264, 2178304, 3524573, 5702882, 9227460, 14930347, 24157812, 39088164, 63245981, 102334150
Offset: 5
Links
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Crossrefs
Programs
-
GAP
List([5..45], n-> Fibonacci(n)-5); # G. C. Greubel, Jul 13 2019
-
Magma
[(Fibonacci(n) - 5): n in [5..45]]; // Vincenzo Librandi, Apr 23 2011
-
Mathematica
Fibonacci[Range[5,45]]-5 (* or *) LinearRecurrence[{2,0,-1},{0,3,8},40] (* Harvey P. Dale, Dec 31 2011 *)
-
PARI
a(n)=fibonacci(n)-5 \\ Charles R Greathouse IV, Jul 01 2013
-
Sage
[fibonacci(n)-5 for n in (5..45)] # G. C. Greubel, Jul 13 2019
Formula
a(n) = a(n-1) + a(n-2) + 5. - Zak Seidov, Jun 27 2010
a(5)=0, a(6)=3, a(7)=8, a(n) = 2*a(n-1) - a(n-3). - Harvey P. Dale, Dec 31 2011
G.f.: x^6*(3+2*x)/((1-x)*(1-x-x^2)). - L. Edson Jeffery, Mar 17 2013