A167865 Number of partitions of n into distinct parts greater than 1, with each part divisible by the next.
1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 5, 4, 3, 1, 6, 2, 5, 4, 5, 1, 9, 1, 6, 4, 4, 4, 8, 1, 6, 6, 7, 1, 11, 1, 8, 8, 4, 1, 10, 3, 10, 5, 8, 1, 11, 4, 10, 7, 6, 1, 13, 1, 10, 11, 7, 6, 15, 1, 9, 5, 11, 1, 14, 1, 9, 12, 8, 5, 15, 1, 16, 9, 8, 1, 18, 5, 12, 7, 10, 1, 21, 7, 13, 11, 5
Offset: 0
Examples
a(12) = 4: [12], [10,2], [9,3], [8,4]. a(14) = 3: [14], [12,2], [8,4,2]. a(18) = 5: [18], [16,2], [15,3], [12,6], [12,4,2]. From _Gus Wiseman_, Jul 13 2018: (Start) The a(36) = 8 lone-child-avoiding achiral rooted trees with 37 vertices: (oooooooooooooooooooooooooooooooooooo) ((oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)) ((ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)) ((ooooo)(ooooo)(ooooo)(ooooo)(ooooo)(ooooo)) ((oooooooo)(oooooooo)(oooooooo)(oooooooo)) (((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))) ((ooooooooooo)(ooooooooooo)(ooooooooooo)) ((ooooooooooooooooo)(ooooooooooooooooo)) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(a((n-d)/d), d=divisors(n) minus{1})) end: seq(a(n), n=0..200); # Alois P. Heinz, Mar 28 2011
-
Mathematica
a[0] = 1; a[n_] := a[n] = DivisorSum[n, a[(n-#)/#]&, #>1&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 07 2015 *)
-
PARI
{ A167865(n) = if(n==0,return(1)); sumdiv(n,d, if(d>1, A167865((n-d)\d) ) ) }
Formula
a(0) = 1 and for n>=1, a(n) = Sum_{d|n, d>1} a((n-d)/d).
G.f. A(x) satisfies: A(x) = 1 + x^2*A(x^2) + x^3*A(x^3) + x^4*A(x^4) + ... - Ilya Gutkovskiy, May 09 2019
Comments