A167871 a(n) = 64^n * Sum_{k=0..n} binomial(2*k,k)^3 / 64^k.
1, 72, 4824, 316736, 20614104, 1335305664, 86248451520, 5560325134848, 357992555533272, 23026456586057408, 1479999826835627328, 95071036081670530560, 6104320340924619384256, 391801560518407856592384
Offset: 0
Keywords
References
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed., Wiley, 1968, p. 361.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
Table[64^n Sum[Binomial[2k,k]^3/64^k,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 26 2012 *)
Formula
a(n) = 64^n * Sum_{k=0..n} binomial(2*k,k)^3 / 64^k.
Recurrence: n^3*a(n) = 8*(4*n-1)*(4*n^2 - 2*n + 1)*a(n-1) - 512*(2*n-1)^3 *a(n-2). - Vaclav Kotesovec, Aug 14 2013
a(n) ~ 64^n*(Pi/GAMMA(3/4)^4 - 2/(Pi^(3/2)*sqrt(n))). - Vaclav Kotesovec, Aug 14 2013
Extensions
More terms from Sean A. Irvine, Apr 25 2010
Comments