cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A167867 a(n) = 2^n * Sum_{k=0..n} binomial(2*k,k)^3 / 2^k.

Original entry on oeis.org

1, 10, 236, 8472, 359944, 16722896, 822334816, 42068907200, 2215884717400, 119364801362800, 6545334930678816, 364137834051739200, 20502307365808906816, 1166063313963833813632, 66893439680369963627264
Offset: 0

Views

Author

Alexander Adamchuk, Nov 14 2009

Keywords

Comments

The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), A167713 (B=16).
The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)^3/B^k gives A079727 for B=1, A167867 (B=2), A167868 (B=3), A167869 (B=4), A167870 (B=16), A167871 (B=64).

Crossrefs

Programs

  • Mathematica
    Table[2^n Sum[Binomial[2k,k]^3/2^k,{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Mar 26 2012 *)

Formula

a(n) = 2^n * Sum_{k=0..n} binomial(2*k,k)^3 / 2^k.
Recurrence: n^3*a(n) = 2*(33*n^3 - 48*n^2 + 24*n - 4)*a(n-1) - 16*(2*n-1)^3*a(n-2). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 2^(6*n+5)/(31*(Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013

Extensions

More terms from Sean A. Irvine, Apr 27 2010

A167868 a(n) = 3^n * Sum_{k=0..n} binomial(2*k,k)^3 / 3^k.

Original entry on oeis.org

1, 11, 249, 8747, 369241, 17110731, 840221217, 42944901219, 2260581606657, 121714776747971, 6671749658197129, 371062413164972955, 20887218937200347281, 1187720356043817041843, 68124474120573747125529
Offset: 0

Views

Author

Alexander Adamchuk, Nov 14 2009

Keywords

Comments

The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), A167713 (B=16).
The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)^3/B^k gives A079727 for B=1, A167867 (B=2), A167868 (B=3), A167869 (B=4), A167870 (B=16), A167871 (B=64).

Crossrefs

Programs

  • Mathematica
    Table[3^n Sum[Binomial[2k,k]^3/3^k,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 26 2012 *)

Formula

a(n) = 3^n * Sum_{k=0..n} binomial(2*k,k)^3 / 3^k.
Recurrence: n^3*a(n) = (67*n^3 - 96*n^2 + 48*n - 8)*a(n-1) - 24*(2*n-1)^3*a(n-2). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 2^(6*n+6)/(61*(Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013

Extensions

More terms from Sean A. Irvine, Apr 27 2010

A167869 a(n) = 4^n * Sum_{k=0..n} binomial(2*k,k)^3 / 4^k.

Original entry on oeis.org

1, 12, 264, 9056, 379224, 17519904, 858968640, 43860112128, 2307187351512, 124161781334048, 6803252453289408, 378260174003539200, 21287072393719585216, 1210206988807094340864, 69402141007670673363456
Offset: 0

Views

Author

Alexander Adamchuk, Nov 14 2009

Keywords

Comments

The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), A167713 (B=16).
The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)^3/B^k gives A079727 for B=1, A167867 (B=2), A167868 (B=3), A167869 (B=4), A167870 (B=16), A167871 (B=64).

Crossrefs

Programs

  • Mathematica
    Table[4^n Sum[Binomial[2k,k]^3/4^k,{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Mar 26 2012 *)

Formula

a(n) = 4^n * Sum_{k=0..n} binomial(2*k,k)^3 / 4^k.
Recurrence: n^3*a(n) = 4*(17*n^3 - 24*n^2 + 12*n - 2)*a(n-1) - 32*(2*n-1)^3*a(n-2). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 2^(6*n+4)/(15*(Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013

Extensions

More terms from Sean A. Irvine, Apr 27 2010

A167870 a(n) = 16^n * Sum_{k=0..n} binomial(2*k,k)^3 / 16^k.

Original entry on oeis.org

1, 24, 600, 17600, 624600, 25996608, 1204834752, 59701593600, 3086972400600, 164324590337600, 8935798773354816, 494019944564058624, 27678350810730366400, 1567912312203901862400, 89647910047704725798400
Offset: 0

Views

Author

Alexander Adamchuk, Nov 14 2009

Keywords

Comments

The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), A167713 (B=16).
The expression a(n) = B^n*Sum_{k=0..n} binomial(2*k,k)^3/B^k gives A079727 for B=1, A167867 (B=2), A167868 (B=3), A167869 (B=4), A167870 (B=16), A167871 (B=64).

Crossrefs

Programs

  • Mathematica
    Table[16^n Sum[Binomial[2k,k]^3/16^k,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 21 2012 *)

Formula

a(n) = 16^n * Sum_{k=0..n} binomial(2*k,k)^3 / 16^k.
Recurrence: n^3*a(n) = 8*(10*n^3 - 12*n^2 + 6*n - 1)*a(n-1) - 128*(2*n-1)^3*a(n-2). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 2^(6*n+2)/(3*(Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013

Extensions

More terms from Sean A. Irvine, Apr 27 2010
Showing 1-4 of 4 results.