A167868
a(n) = 3^n * Sum_{k=0..n} binomial(2*k,k)^3 / 3^k.
Original entry on oeis.org
1, 11, 249, 8747, 369241, 17110731, 840221217, 42944901219, 2260581606657, 121714776747971, 6671749658197129, 371062413164972955, 20887218937200347281, 1187720356043817041843, 68124474120573747125529
Offset: 0
-
Table[3^n Sum[Binomial[2k,k]^3/3^k,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 26 2012 *)
A167869
a(n) = 4^n * Sum_{k=0..n} binomial(2*k,k)^3 / 4^k.
Original entry on oeis.org
1, 12, 264, 9056, 379224, 17519904, 858968640, 43860112128, 2307187351512, 124161781334048, 6803252453289408, 378260174003539200, 21287072393719585216, 1210206988807094340864, 69402141007670673363456
Offset: 0
-
Table[4^n Sum[Binomial[2k,k]^3/4^k,{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Mar 26 2012 *)
A167870
a(n) = 16^n * Sum_{k=0..n} binomial(2*k,k)^3 / 16^k.
Original entry on oeis.org
1, 24, 600, 17600, 624600, 25996608, 1204834752, 59701593600, 3086972400600, 164324590337600, 8935798773354816, 494019944564058624, 27678350810730366400, 1567912312203901862400, 89647910047704725798400
Offset: 0
-
Table[16^n Sum[Binomial[2k,k]^3/16^k,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 21 2012 *)
A167871
a(n) = 64^n * Sum_{k=0..n} binomial(2*k,k)^3 / 64^k.
Original entry on oeis.org
1, 72, 4824, 316736, 20614104, 1335305664, 86248451520, 5560325134848, 357992555533272, 23026456586057408, 1479999826835627328, 95071036081670530560, 6104320340924619384256, 391801560518407856592384
Offset: 0
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed., Wiley, 1968, p. 361.
-
Table[64^n Sum[Binomial[2k,k]^3/64^k,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 26 2012 *)
Showing 1-4 of 4 results.
Comments