cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A167878 A167877(n) + n.

Original entry on oeis.org

0, 2, 2, 6, 8, 8, 8, 8, 8, 18, 20, 20, 24, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 54, 56, 56, 60, 62, 62, 62, 62, 62, 72, 74, 74, 78, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2009

Keywords

Comments

No carry occurs when calculating a(n) by adding A167877(n) to n in ternary arithmetic.

Crossrefs

Cf. A007089, see A167832, A003817 for the decimal and binary cases.

Programs

A035327 Write n in binary, interchange 0's and 1's, convert back to decimal.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46
Offset: 0

Views

Author

Keywords

Comments

For n>0: largest m<=n such that no carry occurs when adding m to n in binary arithmetic: A003817(n+1) = a(n) + n = a(n) XOR n. - Reinhard Zumkeller, Nov 14 2009
a(0) could be considered to be 0 (it was set so from 2004 to 2008) if the binary representation of zero was chosen to be the empty string. - Jason Kimberley, Sep 19 2011
For n > 0: A240857(n,a(n)) = 0. - Reinhard Zumkeller, Apr 14 2014
This is a base-2 analog of A048379. Another variant, without converting back to decimal, is given in A256078. - M. F. Hasler, Mar 22 2015
For n >= 2, a(n) is the least nonnegative k that must be added to n+1 to make a power of 2. Hence in a single-elimination tennis tournament with n entrants, a(n-1) is the number of players given a bye in round one, so that the number of players remaining at the start of round two is a power of 2. For example, if 39 players register, a(38)=25 players receive a round-one bye leaving 14 to play, so that round two will have 25+(14/2)=32 players. - Mathew Englander, Jan 20 2024

Examples

			8 = 1000 -> 0111 = 111 = 7.
		

Crossrefs

a(n) = A003817(n) - n, for n>0.
Cf. A240857.

Programs

  • Haskell
    a035327 n = if n <= 1 then 1 - n else 2 * a035327 n' + 1 - b
                where (n',b) = divMod n 2
    -- Reinhard Zumkeller, Feb 21 2014
    
  • Julia
    using IntegerSequences
    A035327List(len) = [Bits("NAND", n, n) for n in 0:len]
    println(A035327List(100))  # Peter Luschny, Sep 25 2021
  • Magma
    A035327:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    seq(2^(1 + ilog2(max(n, 1))) - 1 - n, n = 0..81); # Emeric Deutsch, Oct 19 2008
    A035327 := n -> `if`(n=0, 1, Bits:-Nand(n, n)):
    seq(A035327(n), n=0..81); # Peter Luschny, Sep 23 2019
  • Mathematica
    Table[BaseForm[FromDigits[(IntegerDigits[i, 2]/.{0->1, 1->0}), 2], 10], {i, 0, 90}]
    Table[BitXor[n, 2^IntegerPart[Log[2, n] + 1] - 1], {n, 100}] (* Alonso del Arte, Jan 14 2006 *)
    Join[{1},Table[2^BitLength[n]-n-1,{n,100}]] (* Paolo Xausa, Oct 13 2023 *)
    Table[FromDigits[IntegerDigits[n,2]/.{0->1,1->0},2],{n,0,90}] (* Harvey P. Dale, May 03 2025 *)
  • PARI
    a(n)=sum(k=1,n,if(bitxor(n,k)>n,1,0)) \\ Paul D. Hanna, Jan 21 2006
    
  • PARI
    a(n) = bitxor(n, 2^(1+logint(max(n,1), 2))-1) \\ Rémy Sigrist, Jan 04 2019
    
  • PARI
    a(n)=if(n, bitneg(n, exponent(n)+1), 1) \\ Charles R Greathouse IV, Apr 13 2020
    
  • Python
    def a(n): return int(''.join('1' if i == '0' else '0' for i in bin(n)[2:]), 2) # Indranil Ghosh, Apr 29 2017
    
  • Python
    def a(n): return 1 if n == 0 else n^((1 << n.bit_length()) - 1)
    print([a(n) for n in range(100)]) # Michael S. Branicky, Sep 28 2021
    
  • Python
    def A035327(n): return (~n)^(-1<Chai Wah Wu, Dec 20 2022
    
  • SageMath
    def a(n):
        if n == 0:
            return 1
        return sum([(1 - b) << s for (s, b) in enumerate(n.bits())])
    [a(n) for n in srange(82)]  # Peter Luschny, Aug 31 2019
    

Formula

a(n) = 2^k - n - 1, where 2^(k-1) <= n < 2^k.
a(n+1) = (a(n)+n) mod (n+1); a(0) = 1. - Reinhard Zumkeller, Jul 22 2002
G.f.: 1 + 1/(1-x)*Sum_{k>=0} 2^k*x^2^(k+1)/(1+x^2^k). - Ralf Stephan, May 06 2003
a(0) = 0, a(2n+1) = 2*a(n), a(2n) = 2*a(n) + 1. - Philippe Deléham, Feb 29 2004
a(n) = number of positive integers k < n such that n XOR k > n. a(n) = n - A006257(n). - Paul D. Hanna, Jan 21 2006
a(n) = 2^{1+floor(log[2](n))}-n-1 for n>=1; a(0)=1. - Emeric Deutsch, Oct 19 2008
a(n) = if n<2 then 1 - n else 2*a(floor(n/2)) + 1 - n mod 2. - Reinhard Zumkeller, Jan 20 2010
a(n) = abs(2*A053644(n) - n - 1). - Mathew Englander, Jan 22 2024

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Feb 01 2003
a(0) corrected by Paolo P. Lava, Oct 22 2007
Definition completed by M. F. Hasler, Mar 22 2015

A167831 Largest m<=n such that no carry occurs when adding m to n in decimal arithmetic.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 20, 21, 22, 23, 24, 24, 23, 22, 21, 20, 30, 31, 32, 33, 34, 34, 33, 32, 31, 30, 40, 41, 42, 43, 44, 44, 43, 42, 41, 40, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2009

Keywords

Comments

A167832(n) = a(n) + n.

Crossrefs

Cf. A167877, A035327 for the ternary and binary cases.
Cf. A031298.

Programs

  • Haskell
    a167831 n = head [x | let ds = a031298_row n, x <- [n, n-1 ..],
                          all (< 10) $ zipWith (+) ds (a031298_row x)]
    -- Reinhard Zumkeller, Mar 15 2014

A353158 a(n) is the distance from n to the nearest integer that can be added to n without carries in base 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 3, 2, 1, 0, 0, 1, 0, 0, 2, 4, 6, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 1, 0, 0, 2, 3, 2, 1, 0, 0, 1, 0, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4
Offset: 0

Views

Author

Rémy Sigrist, Apr 27 2022

Keywords

Examples

			For n = 42:
- the numbers k around 42, alongside their distance to 42, ternary expansion and whether they require carries when added to 42, are:
      k   d  ter(k)  carries?
      --  -  ------  --------
      38  4    1102  no
      39  3    1110  yes
      40  2    1111  yes
      41  1    1112  yes
      42  0    1120  yes
      43  1    1121  yes
      44  2    1122  yes
      45  3    1200  yes
      46  4    1201  yes
- so a(42) = 4.
		

Crossrefs

Cf. A005836 (positions of zeros), A167877, A353157 (binary variant).

Programs

  • PARI
    ok(u,v) = sumdigits(u+v,3)==sumdigits(u,3)+sumdigits(v,3)
    a(n) = { for (d=0, oo, if (ok(n, n-d) || ok(n, n+d), return (d))) }

Formula

a(n) = 0 iff n belongs to A005836.
Showing 1-4 of 4 results.