A167938 Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,-253).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) )); // G. C. Greubel, Sep 09 2023 -
Mathematica
CoefficientList[Series[(1+t)*(1-t^16)/(1-23*t+275*t^16-253*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 09 2023 *) coxG[{16,253,-22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 18 2022 *)
-
SageMath
def A167938_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) ).list() A167938_list(40) # G. C. Greubel, Sep 09 2023
Formula
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 253*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1).
From G. C. Greubel, Sep 09 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 23*t + 275*t^16 - 253*t^17).
a(n) = 22*Sum_{j=1..15} a(n-j) - 253*a(n-16). (End)
Comments