A167940 Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1, 25, 600, 14400, 345600, 8294400, 199065600, 4777574400, 114661785600, 2751882854400, 66045188505600, 1585084524134400, 38042028579225600, 913008685901414400, 21912208461633945600, 525893003079214694400
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,-276).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) )); // G. C. Greubel, Sep 08 2023 -
Mathematica
coxG[{16,276,-23}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 05 2015 *) CoefficientList[Series[(1+t)*(1-t^16)/(1-24*t+299*t^16-276*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *)
-
SageMath
def A167940_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) ).list() A167940_list(40) # G. C. Greubel, Sep 08 2023
Formula
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 276*t^16 - 23*t^15 - 23*t^14 - 23*t^13 - 23*t^12 - 23*t^11 - 23*t^10 - 23*t^9 - 23*t^8 - 23*t^7 - 23*t^6 - 23*t^5 - 23*t^4 - 23*t^3 - 23*t^2 - 23*t + 1).
From G. C. Greubel, Sep 08 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 24*t + 299*t^16 - 276*t^17).
a(n) = 23*Sum_{j=1..15} a(n-j) - 276*a(n-16). (End)
Comments