cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167943 Number of reduced words of length n in Coxeter group on 28 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 28, 756, 20412, 551124, 14880348, 401769396, 10847773692, 292889889684, 7908027021468, 213516729579636, 5764951698650172, 155653695863554644, 4202649788315975388, 113471544284531335476, 3063731695682346057852
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170747, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-27*x+377*x^16-351*x^17) )); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-27*t+377*t^16-351*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 08 2023 *)
    coxG[{16,35,-26}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 20 2021 *)
  • SageMath
    def A167943_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-27*x+377*x^16-351*x^17) ).list()
    A167943_list(40) # G. C. Greubel, Sep 08 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 351*t^16 - 26*t^15 - 26*t^14 - 26*t^13 - 26*t^12 - 26*t^11 - 26*t^10 - 26*t^9 - 26*t^8 - 26*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 - 26*t^2 - 26*t + 1).
a(n) = -351*a(n-16) + 26*Sum_{k=1..15} a(n-k). - Wesley Ivan Hurt, Sep 03 2022
G.f.: (1+t)*(1-t^16)/(1 - 27*t + 377*t^16 - 351*t^17). - G. C. Greubel, Sep 08 2023