A167951 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746826240, 72253221392092160, 2456609527331133440, 83524723929258536960, 2839840613594790256640, 96554580862222868725760
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,-561).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-34*x+594*x^16-561*x^17) )); // G. C. Greubel, Sep 06 2023 -
Mathematica
CoefficientList[Series[(1+t)*(1-t^16)/(1-34*t+594*t^16-561*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 02 2016; Sep 06 2023 *) coxG[{16,561,-33}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 21 2017 *)
-
SageMath
def A167955_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^16)/(1-34*x+594*x^16-561*x^17) ).list() A167955_list(40) # G. C. Greubel, Sep 06 2023
Formula
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 561*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).
From G. C. Greubel, Sep 06 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 34*t + 594*t^16 - 561*t^17).
a(n) = 33*Sum_{j=1..15} a(n-j) - 561*a(n-16). (End)
Comments