cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168029 a(n) = n*(n^6 + 1)/2.

Original entry on oeis.org

0, 1, 65, 1095, 8194, 39065, 139971, 411775, 1048580, 2391489, 5000005, 9743591, 17915910, 31374265, 52706759, 85429695, 134217736, 205169345, 306110025, 446935879, 640000010, 900544281, 1247178955, 1702412735, 2293235724, 3051757825, 4015905101
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n*(n^m + 1)/2: A001477 (m=0), A000217 (m=1), A006003 (m=2), A027441 (m=3), A021003 (m=4), A167963 (m=5), this sequence (m=6), A168067 (m=7), A168116 (m=8), A168118 (m=9), A168119 (m=10).

Programs

  • Magma
    [n*(n^6+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 10 2014
    
  • Mathematica
    CoefficientList[Series[x(1 +57x +603x^2 +1198x^3 +603x^4 +57x^5 +x^6)/ (1-x)^8, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 10 2014 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {0,1,65,1095,8194,39065, 139971,411775}, 41] (* Harvey P. Dale, Jan 24 2019 *)
  • SageMath
    [n*(n^6+1)/2 for n in range(41)] # G. C. Greubel, Jan 12 2023

Formula

G.f.: x*(1+57*x+603*x^2+1198*x^3+603*x^4+57*x^5+x^6)/(1-x)^8. - Vincenzo Librandi, Dec 10 2014
E.g.f.: (x/2)*(2 +63*x +301*x^2 +350*x^3 +140*x^4 +21*x^5 +x^6)*exp(x). - G. C. Greubel, Jan 12 2023

Extensions

More terms from Vincenzo Librandi, Dec 10 2014

A361263 Numbers of the form k*(k^5 +- 1)/2.

Original entry on oeis.org

0, 1, 31, 33, 363, 366, 2046, 2050, 7810, 7815, 23325, 23331, 58821, 58828, 131068, 131076, 265716, 265725, 499995, 500005, 885775, 885786, 1492986, 1492998, 2413398, 2413411, 3764761, 3764775, 5695305, 5695320, 8388600, 8388616, 12068776, 12068793, 17006103, 17006121, 23522931, 23522950
Offset: 1

Views

Author

Thomas Scheuerle, Mar 06 2023

Keywords

Comments

Integer solutions of x + y = (x - y)^6. If x = a(n) then y = a(n - (-1)^n).

Crossrefs

Programs

  • Maple
    map(k -> (k*(k^5-1)/2, k*(k^5+1)/2), [$1..100]);
  • PARI
    concat(0, Vec(x^2*(1+30*x-4*x^2+150*x^3+6*x^4+150*x^5-4*x^6+30*x^7+x^8)/((1-x)^7*(1+x)^6) + O(x^100)))
    
  • Python
    def A361263(n): return (k:=n+1>>1)*(k**5+1-((n&1)<<1))>>1 # Chai Wah Wu, Mar 22 2023

Formula

G.f.: x^2*(1+30*x-4*x^2+150*x^3+6*x^4+150*x^5-4*x^6+30*x^7+x^8) / ((1-x)^7*(1+x)^6).
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 15*a(n-4) + 15*a(n-5) + 20*a(n-6) - 20*a(n-7) - 15*a(n-8) + 15*a(n-9) + 6*a(n-10) - 6*a(n-11) - a(n-12) + a(n-13).
Showing 1-2 of 2 results.