A168029 a(n) = n*(n^6 + 1)/2.
0, 1, 65, 1095, 8194, 39065, 139971, 411775, 1048580, 2391489, 5000005, 9743591, 17915910, 31374265, 52706759, 85429695, 134217736, 205169345, 306110025, 446935879, 640000010, 900544281, 1247178955, 1702412735, 2293235724, 3051757825, 4015905101
Offset: 0
Links
- Kelvin Voskuijl, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Programs
-
Magma
[n*(n^6+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 10 2014
-
Mathematica
CoefficientList[Series[x(1 +57x +603x^2 +1198x^3 +603x^4 +57x^5 +x^6)/ (1-x)^8, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 10 2014 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {0,1,65,1095,8194,39065, 139971,411775}, 41] (* Harvey P. Dale, Jan 24 2019 *)
-
SageMath
[n*(n^6+1)/2 for n in range(41)] # G. C. Greubel, Jan 12 2023
Formula
G.f.: x*(1+57*x+603*x^2+1198*x^3+603*x^4+57*x^5+x^6)/(1-x)^8. - Vincenzo Librandi, Dec 10 2014
E.g.f.: (x/2)*(2 +63*x +301*x^2 +350*x^3 +140*x^4 +21*x^5 +x^6)*exp(x). - G. C. Greubel, Jan 12 2023
Extensions
More terms from Vincenzo Librandi, Dec 10 2014
Comments