cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167986 Triangle T(n,k) = Number of k-cycles on the graph of an n-orthoplex. n>=2, k>=3.

Original entry on oeis.org

0, 1, 8, 15, 24, 16, 32, 102, 288, 640, 960, 744, 80, 370, 1584, 5920, 18240, 43080, 69120, 56256, 160, 975, 5664, 30080, 141120, 564120, 1835520, 4542336, 7580160, 6385920, 280, 2121, 15624, 108080, 684480, 3876600, 19138560, 79805376
Offset: 2

Views

Author

Andrew Weimholt, Nov 16 2009

Keywords

Comments

Row n contains 2n-2 elements.
The n-orthoplex is the dual polytope of the n-cube.
The orthoplex is also known as the cross-polytope.
Also the triangle of coefficients of the cocktail party graph cycle polynomials ordered from smallest to largest exponent starting with x^3. - Eric W. Weisstein

Examples

			T(3,3) = 8, because in dimension n=3, the cross-polytope is the octahedron, which has 8 3-cycles in its graph.
Triangle starts
   0,   1;
   8,  15,   24,   16;
  32, 102,  288,  640,   960,   744;
  80, 370, 1584, 5920, 18240, 43080, 69120, 56256;
  ...
In terms of cycle polynomials:
   0*x^3 +    1*x^4;
   8*x^3 +  15*x^4 +  24*x^5 +  16*x^6;
  32*x^3 + 102*x^4 + 288*x^5 + 640*x^6 + 960*x^7 + 744*x^8;
  ...
		

Crossrefs

Cf. A167987 (row sums).
Cf. A085452 (2k-cycles on graph of n-cube).
Cf. A144151 (k-cycles on (n-1)-simplex for k>3).

Programs

  • Magma
    b:= func< n,k,j | (-1)^j*Binomial(n,j)*Binomial(2*(n-j),k-2*j)*2^(j-1)*Factorial(k-j-1) >;
    A167986:= func< n,k | (&+[b(n,k,j): j in [0..Floor(k/2)]]) >;
    [A167986(n,k): k in [3..2*n], n in [2..10]]; // G. C. Greubel, Jan 17 2023
    
  • Mathematica
    T[n_, k_]:= Sum[(-1)^j*Binomial[n, j]*Binomial[2*(n-j), k-2*j]*2^j*(k - j - 1)!/2, {j, 0, Floor[k/2]}];
    Table[T[n, k], {n,2,7}, {k,3,2*n}]//Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
    Table[Binomial[2n, k]*Gamma[k]*HypergeometricPFQ[{(1-k)/2, -k/2}, {1 - k, 1/2 -n}, -2]/2, {n,7}, {k,3,2n}]//Flatten (* Eric W. Weisstein, Mar 25 2020 *)
  • PARI
    a(n,k)=sum(j=0,k\2, (-1)^j*binomial(n,j)*binomial(2*(n-j),k-2*j)*2^j*(k-j-1)!)/2;
    for (n=2,6,for (k=3,2*n, print1(a(n,k), ","));print); \\ Andrew Howroyd, May 09 2017
    
  • SageMath
    def A167986(n,k): return simplify(binomial(2*n, k)*gamma(k)*hypergeometric([(1-k)/2, -k/2], [1-k, 1/2-n], -2)/2)
    flatten([[A167986(n,k) for k in range(3,2*n+1)] for n in range(2,11)]) # G. C. Greubel, Jan 17 2023

Formula

T(n,k) = Sum_{j=0..floor(k/2)} (-1)^j*binomial(n,j)*binomial(2*(n-j),k-2*j)*2^j*(k-j-1)!/2. - Andrew Howroyd, May 09 2017