cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168053 Expansion of (1-2*x^2-3*x^3)/((1-x)^2*(1+x+x^2)).

Original entry on oeis.org

1, 1, -1, -3, -3, -5, -7, -7, -9, -11, -11, -13, -15, -15, -17, -19, -19, -21, -23, -23, -25, -27, -27, -29, -31, -31, -33, -35, -35, -37, -39, -39, -41, -43, -43, -45, -47, -47, -49, -51, -51, -53, -55, -55, -57, -59, -59, -61, -63, -63, -65, -67, -67, -69
Offset: 0

Views

Author

Paul Barry, Nov 17 2009

Keywords

Crossrefs

Cf. A168054.

Programs

  • Magma
    m:=55; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x^2-3*x^3)/((1-x)^2*(1+x+x^2)))); // Bruno Berselli, May 31 2013
  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,1,-1,-3},60] (* Harvey P. Dale, Jan 15 2015 *)
    CoefficientList[Series[(1 - 2 x^2 - 3 x^3) / ((1 - x)^2 (1 + x + x^2)), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 08 2016 *)

Formula

a(n) = -(n^9 -45n^8 +846n^7 -8610n^6 +51345n^5 -181125n^4 +361584n^3 -361260n^2 +137264n -6720)/6720.
a(n) = A168054(n)/2^n.

A168055 Expansion of 2 - x - sqrt(1-2x-3x^2).

Original entry on oeis.org

1, 0, 2, 2, 4, 8, 18, 42, 102, 254, 646, 1670, 4376, 11596, 31022, 83670, 227268, 621144, 1706934, 4713558, 13072764, 36398568, 101704038, 285095118, 801526446, 2259520830, 6385455594, 18086805002, 51339636952, 146015545604
Offset: 0

Views

Author

Paul Barry, Nov 17 2009

Keywords

Comments

Hankel transform is A168054.

Examples

			G.f. = 1 + 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
		

Crossrefs

Cf. A168049.
Cf. A126068, A007971. [R. J. Mathar, Nov 18 2009]

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, n}] (* Michael Somos, Jan 25 2014 *)
  • PARI
    {a(n) = polcoeff( 2 - x - sqrt(1 - 2*x - 3*x^2 + x * O(x^n)), n)} /* Michael Somos, Jan 25 2014 */

Formula

a(n+2) = 2*A001006(n).
a(n) = 0^n + 2*Sum_{k=0..floor((n-2)/2)} C(n-2,2k)*A000108(k).
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) if n>0. - Michael Somos, Jan 25 2014
D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +3*(-n+3)*a(n-2)=0. - R. J. Mathar, Nov 19 2014

Extensions

Name corrected by Michael Somos, Mar 23 2012
Showing 1-2 of 2 results.